-
为描述两点距离的不确定性,文献[1]给出了模糊度量(简称为KM模糊度量)的概念,文献[2]对KM模糊度量进行了改进,提出了现在被称之为GV模糊度量的新概念. 文献[3]对KM模糊度量和GV模糊度量进行了推广,引入了(L,M)模糊度量的概念. 到目前为止,许多经典度量空间的重要结果被推广到了模糊度量空间中[4-10],同时,模糊度量已经被广泛地应用在彩色图像处理和算法分析中[11-17]. 为研究模糊度量与分明度量之间的关系,文献[7]给出了伪度量族空间的概念,建立了两个分解定理. 然而正如文献[7]中所指出的,这两个定理成立需要对模糊度量定义中的t-模进行严格的限制.
本文引入了星伪度量族的概念,利用这一概念,建立了具有一般t-模的模糊度量的分解定理. 此外,在引入模糊度量空间与伪度量族空间等距同构的概念之后,给出了模糊度量空间与伪度量族空间等距同构的充分条件和必要条件.
Pseudo-Metric Structure and Isometrical Isomorphism in Fuzzy Metric Spaces
-
摘要: 由于模糊度量在彩色图像滤波等方面的成功应用,近年来该领域的研究引起了人们的重视. 在将经典度量空间中的重要结论推广到模糊度量空间中的同时,研究方法上的创新显得特别重要. 其中,将模糊度量分解为一族经典度量,建立模糊度量的分解定理无疑是十分有意义的. 已有的分解定理主要是针对取小算子的模糊度量展开的,在应用上具有很大的局限性. 本文引入了星伪度量族的概念作为对伪度量族概念的推广,利用这一概念,建立了针对取一般连续t-模的模糊度量的分解定理. 同时,本文给出了模糊度量空间与伪度量族空间等距同构的充分条件和必要条件,由此建构起模糊度量与伪度量族之间的联系,为一般意义下的模糊度量的研究提供了一种新的有效途径.Abstract: Due to the successful applications in such fields as color image filtering, the research about fuzzy metrics has attracted more and more attention in recent years. While many important results of classical metric spaces are generalized to fuzzy metric spaces, the innovation of research methodsis becoming increasingly important. No doubt, decomposition of fuzzy metrics into a family of classical metrics and establishment of decomposition theorems of fuzzy metrics are of great significance. The existing decomposition theorems, however, are mainly focused on fuzzy metrics with the minimum operator, and thus have great limitations in application. In this paper, the concept of family of star pseudo-metrics is introduced as a generalization of the family of pseudo-metrics. In addition, the sufficient and necessary conditions of isometric isomorphism between a fuzzy metric space and a family of pseudo-metric spaces are given, and the relationship between them is constructed, which provides a new and effective approach to the study of fuzzy metrics in the general sense.
-
Key words:
- fuzzy set /
- fuzzy metric /
- pseudo-metric /
- decomposition /
- isometrical isomorphism .
-
[1] doi: http://www.ams.org/mathscinet-getitem?mr=410633 KRAMOSIL I, MICHALEK J. Fuzzy Metrics and Statistical Metric Spaces[J]. Kybernetika, 1975, 11(5): 336-344. [2] GEORGE A, VEERAMANI P. On Some Results in Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 1994, 64(3): 395-399. doi: 10.1016/0165-0114(94)90162-7 [3] SHI F G. (L, M)-Fuzzy Metric Spaces[J]. Indian Journal of Mathematics, 2010, 52(2): 231-250. [4] GAO Y, ZHOU X N. The Relationships Between KM-Fuzzy Quasi-Metric Spaces and the Associated Posets of Formal Balls[J]. Electronic Notes in Theoretical Computer Science, 2017, 333: 17-29. doi: 10.1016/j.entcs.2017.08.003 [5] GREGORI V, ROMAGUERA S. On Completion of Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 2002, 130(3): 399-404. doi: 10.1016/S0165-0114(02)00115-X [6] GREGORI V, ROMAGUERA S. Characterizing Completable Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 2004, 144(3): 411-420. doi: 10.1016/S0165-0114(03)00161-1 [7] doi: http://www.afmi.or.kr/articles_in_%20press/2015-08/AFMI-H-150506R1/AFMI-H-150506R1.pdf RANO G, BAG T, SAMANTA K S. Fuzzy Metric Space and Generating Space of Quasi-Metric Family[J]. Ann Fuzzy Math Inform, 2016, 11(2): 183-195. [8] SANCHEZ I, SANCHIS M. Fuzzy Quasi-Pseudometrics on Algebraic Structures[J]. Fuzzy Sets and Systems, 2018, 330: 79-86. doi: 10.1016/j.fss.2017.05.022 [9] 杨洋, 吴健荣. 关于模糊拟度量诱导的双拓扑空间的一些性质[J]. 苏州科技大学学报(自然科学版), 2017, 34(4): 14-19. doi: 10.3969/j.issn.1672-0687.2017.04.003 [10] 杨浩, 吴健荣. 模糊度量空间中的有界集[J]. 西南大学学报(自然科学版), 2019, 41(10): 45-50. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.10.006 [11] GREGORI V, MORILLAS S, SAPENA A. Examples of Fuzzy Metrics and Applications[J]. Fuzzy Sets and Systems, 2011, 170(1): 95-111. doi: 10.1016/j.fss.2010.10.019 [12] MORILLAS S, GREGORI V, PERIS-FAJARNES G, et al. A New Vector Median Filter Based on Fuzzy Metrics[C]//Image Analysis and Recognition: Second International Conference. Toronto: Mohamed Kamel Aurélio Campilho, 2005: 81-90. [13] MORILLAS S, GREGORI V, PERIS-FAJARNES G, et al. A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics[J]. Real-Time Imaging, 2005, 11(5-6): 417-428. doi: 10.1016/j.rti.2005.06.007 [14] ROMAGUERA S, SAPENA A, TIRADO P. The Banach Fixed Point Theorem in Fuzzy Quasi-Metric Spaces with Application to the Domain of Words[J]. Topology and Its Applications, 2007, 154(10): 2196-2203. doi: 10.1016/j.topol.2006.09.018 [15] WU J R, JIN Z Y. A Note on Ulam Stability of Some Fuzzy Number-Valued Functional Equations[J]. Fuzzy Sets and Systems, 2019, 375: 191-195. doi: 10.1016/j.fss.2018.10.018 [16] 张振荣, 赵凯. 非齐度量测度空间上广义分数次积分算子交换子的有界性[J]. 西南大学学报(自然科学版), 2020, 42(8): 88-96. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.08.012 [17] 张韩雨, 陈守全. Brinbaum-Sauders分布的极值收敛速度[J]. 西南师范大学学报(自然科学版), 2020, 45(1): 19-24. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202001005.htm [18] SCHWEIZER B, SKLAR A. Statistical Metric Spaces[J]. Pacific J Math, 1960, 10(1): 313-334. doi: 10.2140/pjm.1960.10.313
计量
- 文章访问数: 540
- HTML全文浏览数: 540
- PDF下载数: 135
- 施引文献: 0