-
开放科学(资源服务)标志码(OSID):
-
植物工厂在未来城市农业现代化建设中发挥着重要作用. 我国是蔬菜栽培的农业生产大国,但不是农业生产强国,确保新鲜水果和蔬菜的安全高效供给面临巨大的挑战[1-2]. 目前,我国蔬菜的栽植量巨大,60%以上蔬菜种植采用育苗移栽,传统的移栽作业方式要求大量的手工作业,制约了蔬菜栽培的发展[3]. 设施园艺智能化是当前包括中国在内的世界农业智能化装备的研发热点和产业升级重点[4-6],自动化作业可以解放人的手工劳动,在保持质量稳定的同时使作业速度成倍提高,但目前距离产业化应用仍存在目标检测、种苗识别等技术瓶颈需要突破[7].
发芽率是采购种子时计算成本的重要依据,对研究农作物适宜的环境条件亦有意义. 由于穴盘播种普遍存在空穴问题,为保证出苗率,一般在1个穴位里放多粒种子,甚至通过补种获得整齐一致的穴盘苗[8]. 补种虽然可以提高穴盘的使用效率,但浪费种子,效率低,只适合人工操作,影响发芽率测算,也制约了移栽效率[9-10]. 随着计算机视觉和图像处理技术的进步,实施单粒精量播种有利于在线检测种子的发芽率和提高移栽效率[11-12]. 现代检测技术已经形成了自动化操作,逐步替代了人工目测的传统检测方法,产品的检测效率极大提高[13-14]. 目前,机器视觉已应用到农业生产的多个检测环节,如:种子的筛选和质量检验[15]、蔬菜生长状况的监测[16]、蔬菜秧苗形态测量[17]、蔬菜新鲜度分级[18]、杂草的检测[19]等. 配置视觉的检测系统可在线监测穴盘苗的发芽生长情况,不受空穴问题影响.
本文设计的基于机器学习的发芽率在线视觉检测系统,是基于机器学习的图像特征提取方法和分类方法[20-22],实现对穴盘苗发芽阶段的图像检测[23-25];基于多视图定位原理,提出融合不同视角的检测结果计算穴孔的可信度;最后对系统进行试验,验证了穴盘苗检出率、穴位检出率和误检率等详细指标.
Research of Online Vision Detection for Germination of Plug Seedlings
-
摘要: 植物工厂实现大规模、高速和自动化作业需要快速、精准地掌握种苗发芽生长信息,在线检测是关键. 本文设计了一套基于机器学习的在线视觉检测系统,用于检测穴盘苗的发芽率,并计算种苗的生长方向,进而定位种苗所在的穴位. 该系统用数字相机联网技术,采集穴盘苗图像,基于机器学习方法制作训练样本,构建训练集和测试集,通过多视图融合方法估计每个穴位有苗的可信度,并依据可信度来判断发芽率情况. 试验结果表明,单视图检测种苗速度快、误检率低,但检出率较低;采用多视图融合的方法后穴盘苗检出率达到95.16%,穴位检出率达到100%;本文提出的多视图融合估计可信度方法具有较高的检测精度,而且精度仍有提升的空间,研究结果可为单粒播种的大规模、高速和自动化作业提供技术参考.Abstract: China is a large vegetable production and consumption country, and the demand for vegetable planting is very huge. At present, more than 60% of vegetable planting adopts seedling transplanting, and the traditional transplanting operation requires a large number of manual operations, which restricts the development of vegetable cultivation. Facility cultivation has developed rapidly in recent years due to its little dependence on weather, safety and pollutionlessness. Although reseeding can improve the efficiency of plug seedling transplanting, it wastes seeds and manpower and restricts the improvement of the whole production of plant facto ries. Large-scale, high-speed and automatic operation requires fast and accurate sensing of the germination of plug seedlings and the growth information of transplanted seedlings, and object detection is the key. Object detection not only recognizes object categories, but also predicts the location of each object. With the development of computer vision technology, the efficiency of object detection is greatly improved as a new solution which is provided to replace the traditional method of manual visual detection. In this paper, an online vision detection system based on machine learning is proposed, which is used to detect the germination rate of plug seedlings and calculate the growth direction, so as to localize the foothold of seedlings. This online vision detection system uses digital camera networking technology to collect the images of seed germination, makes training based on the machine learning method, constructs atraining set and atest set, calculates the dependability of each foothold of seedling by multi-view fusion algorithm, and judges the germination situation according to the dependability. The results of an experiment show that the single view has fast detection speed and low false detection rate, but low accuracy, whilethe adoption of multi-view fusiongives asuccess rate of plug-seedling detection of 95.16% and asuccess rate of seedling location of 100%. In conclusion, the on-line multi-view fusion system proposed in this paper has relatively high detection accuracy, though there is room for further improvement, and may provide technical references for mass, high-speed and automatic production requirements of plant facto ries.
-
Key words:
- plant factory /
- machine learning /
- plug seedling /
- machine vision /
- online vision detection .
-
表 1 穴位有种苗的可信度
穴位编号 1 2 3 4 5 6 L 43% 86% 86% 57% 71% 43% K 0% 86% 86% 100% 86% 86% J 71% 29% 100% 14% 57% 43% I 0% 71% 71% 0% 0% 57% H 100% 43% 29% 14% 71% 14% G 57% 29% 0% 0% 71% 100% F 100% 29% 0% 71% 43% 29% E 71% 71% 71% 0% 100% 0% D 71% 43% 71% 100% 57% 43% C 29% 86% 14% 43% 0% 71% B 100% 86% 100% 86% 43% 29% A Mark 0% 86% 0% 86% 43% -
[1] SHAMSHIRI R, KALANTARI F, TING K C, et al. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 1-22. [2] 刘霓红, 蒋先平, 程俊峰, 等. 国外有机设施园艺现状及对中国设施农业可持续发展的启示[J]. 农业工程学报, 2018, 34(15): 1-9. doi: 10.11975/j.issn.1002-6819.2018.15.001 [3] 童俊华, 俞高红, 朱赢鹏, 等. 三臂回转式蔬菜钵苗取苗机构设计与试验[J]. 农业机械学报, 2019, 50(1): 113-121. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201901012.htm [4] 齐飞, 李恺, 李邵, 等. 世界设施园艺智能化装备发展对中国的启示研究[J]. 农业工程学报, 2019, 35(2): 183-195. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201902024.htm [5] 束胜, 康云艳, 王玉, 等. 世界设施园艺发展概况、特点及趋势分析[J]. 中国蔬菜, 2018(7): 1-13. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSC201807002.htm [6] MUANGPRATHUB J, BOONNAM N, KAJORNKASIRAT S, et al. IoT and Agriculture Data Analysis for Smart farm[J]. Computers and Electronics in Agriculture, 2019, 156: 467-474. doi: 10.1016/j.compag.2018.12.011 [7] 齐飞, 魏晓明, 张跃峰. 中国设施园艺装备技术发展现状与未来研究方向[J]. 农业工程学报, 2017, 33(24): 1-9. doi: 10.11975/j.issn.1002-6819.2017.24.001 [8] 李玉东, 于晓峰, 佟立辉. 玉米单粒播种栽培技术[J]. 农业与技术, 2013, 33(11): 139. doi: 10.3969/j.issn.1671-962X.2013.11.115 [9] 胡建平, 常航, 杨丽红, 等. 自动移栽机整排取苗间隔投苗控制系统设计与试验[J]. 农业机械学报, 2018, 49(6): 78-84. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201806009.htm [10] 王桂莲, 刘伟超, 王安, 等. 基于机器视觉的水稻秧盘育秧智能补种装置设计与试验[J]. 农业工程学报, 2018, 34(13): 35-42. doi: 10.11975/j.issn.1002-6819.2018.13.005 [11] 玄冠涛, 邵园园, 侯加林, 等. 小型蔬菜穴盘精密播种机的设计与试验[J]. 农机化研究, 2018, 40(2): 85-89. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201802016.htm [12] 朱盘安, 李建平, 楼建忠, 等. 便携式蔬菜穴盘自动播种机设计与试验[J]. 农业机械学报, 2016, 47(8): 7-13. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201608002.htm [13] 廖庆喜, 雷小龙, 廖宜涛, 等. 油菜精量播种技术研究进展[J]. 农业机械学报, 2017, 48(9): 1-16. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201709001.htm [14] REHMAN T U, MAHMUD M S, CHANG Y K, et al. Current and Future Applications of Statistical Machine Learning Algorithms for Agricultural Machine Vision Systems[J]. Computers and Electronics in Agriculture, 2019, 156: 585-605. doi: 10.1016/j.compag.2018.12.006 [15] 全胜, 基于机器视觉的蔬菜种子质量检测系统的设计与实现[D]. 长沙: 湖南大学, 2017. [16] 豆东东. 基于机器视觉的大棚蔬菜生长状况的监测[D]. 上海: 东华大学, 2016. [17] 冯青春, 陈建, 李翠玲, 等. 基于光度立体视觉的蔬菜秧苗叶片形态测量方法[J]. 农业机械学报, 2018, 49(5): 43-50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201805005.htm [18] 冯甲一. 基于计算机视觉技术的叶类蔬菜新鲜度检测分级研究[D]. 南京: 南京农业大学, 2012. [19] 张雨滋. 计算机视觉技术在果园除草机上的应用研究[J]. 农机化研究, 2018, 40(3): 208-211, 216. doi: 10.3969/j.issn.1003-188X.2018.03.042 [20] 潘琪, 尹雄, 秦襄培, 等. 基于HOG特征与SVM的胶体气泡识别方法研究[J]. 智能计算机与应用, 2018, 8(5): 21-24. doi: 10.3969/j.issn.2095-2163.2018.05.005 [21] 郭晶晶, 许萌, 孔令爱. 基于改进HOG特征的人数统计算法[J]. 信息技术与信息化, 2019(3): 81-84. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SDDZ201903033.htm [22] 王伟, 吴芳. 基于注意机制和循环卷积神经网络的细粒度图像分类算法[J]. 西南师范大学学报(自然科学版), 2020, 45(1): 48-56. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202001010.htm [23] KING D E. Dlib-ml: A Machine Learning Toolkit[J]. Journal of Machine Learning Research, 2009, 10(3): 1755-1758. [24] DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA, 2005: 886-893. [25] CHANG C C, LIN C J. LIBSVM: a Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2 (3): 27.