-
开放科学(资源服务)标志码(OSID):
-
土木结构抗震性能的优劣关乎人类生命和财产安全,如何提高土木结构的抗震能力一直以来都是工程领域的研究热点. 磁流变阻尼器(MRD)是一种颇具应用前景的智能半主动控制装置,它兼有主动控制装置和被动控制装置的优点. 近年来,基于它的振动控制研究已经获得越来越多的关注[1-2]. 为了使MRD的优良减震特性得到充分发挥,基于它的半主动控制研究仍有待进一步深入.
现有的利用MRD进行振动控制的算法主要包括线性最优控制[3]、H∞控制[4]、滑模控制[5]、模糊控制[6]、神经网络控制[7]等. 在结构振动控制中,由于存在系统建模误差和结构参数摄动,难以建立精确的控制模型,因此要求所采用的控制算法具有较强的鲁棒性. 作为一种鲁棒控制方法,近年来H∞控制在MRD半主动振动控制中的研究受到越来越多的关注. Yeganehfallah等[4]为了实现地震波激励下的斜拉索桥MRD振动控制,设计了一种H∞鲁棒控制器. 研究结果表明,这种控制方法能够有效减小参数不确定性对系统地震响应的影响. Wu等[8]针对MRD悬架减振问题,设计了一种考虑时变载荷的H∞半主动控制方法,仿真和实验结果均表明在不同的路况激励下,该控制方法都能提升乘坐舒适度和车辆驾驶性能. 然而,这些研究中的H∞控制算法更侧重考虑系统的鲁棒稳定性,控制器的设计相对比较保守.
混合灵敏度H∞控制作为一种典型的H∞控制,可以通过调整控制器结构以及对闭环传递函数进行增益成形,满足系统的动态特性的不同需求,在保证鲁棒稳定的同时改善系统的性能指标. 张子健等[9]针对机翼颤振问题,设计了一种混合灵敏度H∞控制器,仿真结果表明,相比LQG控制器,该控制方法将颤振速度提高了12.2%,能够更加有效地抑制机翼颤振. Çetin等[10]针对全阶-六自由度建筑结构的MR阻尼器振动控制问题,提出一种考虑降阶模型的混合灵敏度H∞半主动控制方法,实验结果表明,这种控制方法具有良好的结构响应控制效果和鲁棒稳定性. 但是,混合灵敏度H∞控制性能在很大程度上取决于其加权函数的选择,且当控制对象和控制指标改变时,其加权函数也必须随之改变. 而目前加权函数还没有确切的选择方法,函数之间也没有特定的规律可循,通常需要经过一系列试计算确定. 为了克服加权函数的选取对工程经验的依赖性,采用智能优化算法对其进行优选是一种切实可行的方案[11].
基于上述分析,本文针对地震波激励下的结构振动问题,考虑到结构模型中忽略的不确定性和减振性能要求,提出一种改进的混合灵敏度H∞鲁棒半主动控制方法. 其中,鉴于混合灵敏度H∞控制器加权函数难以确定的问题,提出采用WOA对其进行优化设计. 虽然WOA已在多领域得到成功应用,但据笔者所知,尚未发现其在H∞控制器优化设计方面的研究. 在该半主动控制策略中,首先利用基于WOA优化的混合灵敏度H∞控制器计算主动控制力,然后引入限幅电压定律(CVL)[1],使其根据主动控制力计算MRD的控制信号,最终实现基于MRD的半主动控制. 为验证所提出的控制方法的有效性,本文将针对地震波激励下的Benchmark结构,通过仿真测试,比较所提出的控制方法与现有其他几种控制方法的控制效果. 此外,还将分析地震波和结构参数变化时该控制方法的控制效果.
Mixed-Sensitivity Design Based H∞ Robust Semi-Active Control for Structural Vibration
-
摘要: 为兼顾基于磁流变阻尼器(MRD)的结构减振效果和控制算法的鲁棒性,提出了一种改进的H∞鲁棒半主动控制方法. 将基于干扰抑制问题的H∞控制系统的设计转化为混合灵敏度求解问题,为了克服对工程经验的依赖性,并提高主动控制力的计算精度,提出利用鲸鱼优化算法对H∞控制器的混合灵敏度加权函数进行带约束优化设计. 利用限幅电压定律,将所设计的鲁棒控制器输出的主动控制力转换成MRD的控制信号,从而输出理想的阻尼力. 研究结果表明:相较于其他4种半主动控制算法,本文所提出的控制算法具有更优越的综合控制性能. 此外,该算法对地震波和结构参数的变化具有鲁棒性.Abstract: To ensure both the MRD-based (magnetorheological damper-based) structural vibration control effect and the robustness of the control algorithm, an advanced semi-active H∞ robust control strategy is proposed in this paper. The design of the H∞ control system is converted into the solution of a mixed sensitivity problem. In order to overcome the dependency on engineering experience and improve the accuracy of active control calculation, we use the whale optimization algorithm to make an optimization design with constraint of the mixed weighted sensitivity function of the H∞ control. Using the limited voltage law, we convert the active control put out by the designed robust controller into the control command of the MRD, so as to put out the desired damping force. Numerical analysis results based on a three-story Benchmark frame structure verify that the proposed control algorithm outperforms the other four semi-active control algorithms in terms of the comprehensive control performance and exhibits robustness in terms of the changes of the earthquake excitations and structural parameters.
-
表 1 不同控制策略下各层的响应峰值
响应 无控 LQR- CVL 模糊 模糊GH2 无优化H∞CVL WOA- H∞CVL 0.294 0.114 (79%) 0.101 (82%) 0.156 (72%) 0.149 (73%) 0.127 (77%) xi/cm 0.561 0.185 (78%) 0.184 (78%) 0.27 (68%) 0.228 (73%) 0.188 (77%) 0.741 0.219 (77%) 0.282 (71%) 0.334 (66%) 0.294 (70%) 0.223 (77%) 0.294 0.114 (79%) 0.101 (82%) 0.156 (72%) 0.149 (73%) 0.127 (77%) di/cm 0.270 0.09 (72%) 0.137 (57%) 0.119 (62%) 0.135 (57%) 0.099 (69%) 0.181 0.101 (50%) 0.101 (50%) 0.064 (68%) 0.097 (52%) 0.073 (64%) 834 721 (18%) 400 (54%) 273 (69%) 474 (46%) 502 (43%) ${{\rm{\ddot x}}_{\rm{i}}}$ /(cm·s-2)1 001 746 (30%) 438 (59%) 388 (64%) 397 (63%) 443 (59%) 1 642 706 (50%) 704 (50%) 448 (68%) 673 (52%) 505 (64%) F(N) 953 843 673 919 774 -
[1] DYKE S J, SPENCER B F, SAIN M K, et al. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction [J]. Smart Materials and Structures, 1996, 5(5): 565-584. doi: 10.1088/0964-1726/5/5/006 [2] YANG B, SUN S S, DENG L, et al. Vibration Control of a Tunnel Boring Machine Using Adaptive Magnetorheological Damper [J]. Smart Materials and Structures, 2019, 28(11): 115012-115026. doi: 10.1088/1361-665X/ab41a4 [3] 林秀芳, 陈淑梅, 黄国荣. 基于帝国竞争算法和LQG的磁流变阻尼器-建筑结构系统的振动控制[J]. 振动与冲击, 2018, 37(5): 194-201. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201805030.htm [4] doi: http://www.onacademic.com/detail/journal_1000039826880610_190b.html YEGANEHFALLAH A, ATTARI N K A. Robust Control of Seismically Excited Cable Stayed Bridges with MR Dampers [J]. Smart Materials and Structures, 2017, 26(3): 35-56. [5] EL-KHOURY O, KIM C, SHAFIEEZADEH A, et al. Mitigation of the Seismic Response of Multi-Span Bridges Using MR Dampers: Experimental Study of a New SMC-Based Controller [J]. Journal of Vibration and Control, 2018, 24(1): 83-99. doi: 10.1177/1077546316633540 [6] MAHMOODABADI M J, MOTTAGHI M B S, MAHMODINEJAD A. Optimum Design of Fuzzy Controllers for Nonlinear Systems Using Multi-Objective Particle Swarm Optimization [J]. Journal of Vibration and Control, 2016, 22(3): 769-783. doi: 10.1177/1077546314532116 [7] HASHEMIS M A, HAJI K H, KARAMODIN A. Localized Genetically Optimized Wavelet Neural Network for Semi-Active Control of Buildings Subjected to Earthquake [J]. Structural Control and Health Monitoring, 2016, 23(8): 1074-1087. doi: 10.1002/stc.1823 [8] WU J, ZHOU H L, LIU Z Y, et al. A Load-Dependent PWA-H∞ Controller for Semi-Active Suspensions to Exploit the Performance of MR Dampers [J]. Mechanical Systems and Signal Processing, 2019, 127: 441-462. doi: 10.1016/j.ymssp.2019.03.018 [9] 张子健, 徐敏, 陈士橹. 机翼颤振的混合灵敏度H∞鲁棒控制器设计[J]. 计算力学学报, 2010, 27(4): 661-666. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201004016.htm [10] doi: http://www.researchgate.net/profile/Selim_Sivrioglu/publication/277373226_Semi-active_H_robust_control_of_six_degree_of_freedom_structural_system_using_MR_damper/links/5593c61908ae1e9cb429d180.pdf CETIN S, SIVIOGLU S, ZERGEROGLU E, et al. Semi-Active H∞ Robust Control of Six Degree of Freedom Structural System Using MR Damper [J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2011, 19(5): 797-805. [11] LIN X F, CHEN S M, HUANG G R. A Shuffled Frog-Leaping Algorithm Based Mixed-Sensitivity H∞ Control of a Seismically-Excited Structural Building Using MR Dampers [J]. Journal of Vibration and Control, 2018, 24(13): 2832-2852. doi: 10.1177/1077546317695462 [12] 田梦, 曲宗希, 吴彬贵, 等. 一种基于花授粉算法的WRF风速集合预报新模型[J]. 西南大学学报(自然科学版), 2019, 41(8): 99-106. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.08.015 [13] 李建国, 张海飞, 周璐婕, 等. 基于改进遗传算法的立体车库布局对比及服务资源优化[J]. 西南大学学报(自然科学版), 2019, 41(4): 139-148. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.04.020 [14] 李玉善, 唐惟胜, 季学武, 等. 基于鲁棒补偿RBF网络的IEHB系统液压力控制[J]. 重庆理工大学学报(自然科学), 2020, 34(1): 51-57. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202001009.htm [15] MIRJALILI S, LEWIS A. The Whale Optimization Algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008 [16] ALJARAH I, FARIS H, MIRJALILI S. Optimizing Connection Weights in Neural Networks Using the Whale Optimization Algorithm [J]. Soft Computing, 2018, 22(1): 1-15. doi: 10.1007/s00500-016-2442-1 [17] RATHORE R S, SANGWAN S M, MAZUMDAR S, et al. W-GUN: Whale Optimization for Energy and Delay-Centric Green Underwater Networks [J]. Sensors, 2020, 20(5): 1377. doi: 10.3390/s20051377 [18] doi: http://www.researchgate.net/publication/339153783_Optimal_Placement_Sizing_and_Coordination_of_FACTS_Devices_in_Transmission_Network_Using_Whale_Optimization_Algorithm NADEEM M, IMRAN K, KHATTAK A, et al. Optimal Placement, Sizing and Coordination of FACTS Devices in Transmission Network Using Whale Optimization Algorithm [J]. Energies, 2020, 13(3): 753-765. [19] doi: http://www.onacademic.com/detail/journal_1000040885107010_6862.html KUMAR V, KUMAR D. Binary Whale Optimization Algorithm and Its Application to Unit Commitment Problem [J]. Neural Computing and Applications, 2020, 32(7): 2095-2123. [20] doi: http://ieeexplore.ieee.org/document/8993843 PHAM Q V, MIRJALILI S, KUMAR N, et al. Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks [J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4285-4297. [21] doi: http://sdvc.kaist.ac.kr/article/FJ/FJ40.pdf CHOI K M, CHO S W, JUNG H J, et al. Semi-Active Fuzzy Control for Seismic Response Reduction Using Magnetorheological Dampers [J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (6): 723-736. [22] DU H P, ZHANG N. Model-Based Fuzzy Control for Buildings Installed with Magneto-Rheological Dampers [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(9): 1091-1105.