-
开放科学(资源服务)标识码(OSID):
-
近年来,在光热治疗领域,许多能有效吸收近红外光的光热剂被逐渐发掘出来,铜基二元/三元硫属化合物即是其中极具代表性的一类[1-4],它们在近红外区具有较强的局部表面等离子体激元共振吸收,这一特点使其具有优异的光热转换能力[5-9]. 由于铜原子的缺失,Cu2-xE(E=S,Se,Te,0≤x≤1)系列化合物也有着较强的等离子体激元共振吸收和优异的光热性能[10],通过改变x的具体数值可以调节其等离子体激元共振吸收性质[11-13].
基于此,本研究构建了基于Cu2-xSe@MIL-100(Fe)-DOX的光热/化学动力学/化学治疗三模式乏氧治疗体系. 在整个体系中,光热剂Cu2-xSe纳米粒子产生的高热不仅发挥了其本身光热治疗的作用,而且还同肿瘤微环境的酸性pH共同促进了MIL-100(Fe)芬顿反应的进行以及药物阿霉素的释放,提高了治疗效率. 更重要的一点是,光热、化学动力学以及化学治疗都是不依赖氧气的治疗方式,因此本研究构建的Cu2-xSe@MIL-100(Fe)-DOX在乏氧肿瘤治疗领域有着一定的潜在应用价值.
Synthesis and Multi-mode Anti-tumor Research of Cu2-xSe@MIL-100(Fe)-DOX
-
摘要: 采用高温溶剂注入法合成了形貌均匀的Cu2-xSe纳米粒子,经聚乙烯吡咯烷酮修饰转水后通过一步溶液法在粒子表面包覆金属有机骨架MIL-100(Fe),最后利用MIL-100(Fe)介孔壳较大的比表面积和多孔结构负载上抗肿瘤药物阿霉素(DOX). Cu2-xSe纳米粒子作为一种性能优异的新型光热剂,可以被近红外二区1 064 nm光源激发并发挥肿瘤治疗作用;同时,Cu2-xSe纳米粒子产生的光热提高了MIL-100(Fe)的化学动力学治疗效果、促进了抗癌药物阿霉素的释放进程. 实验结果表明:该研究构建的纳米材料平台可以实现光热治疗、热促进化学动力学治疗和化学治疗3种乏氧肿瘤治疗策略的协同作用,具有潜在的应用价值.
-
关键词:
- Cu2-xSe纳米粒子 /
- 多模式抗肿瘤 /
- 乏氧肿瘤治疗
Abstract: The Cu2-xSe nanoparticles with uniform morphology were firstly synthesized by high-temperature solvent-injection method. After being modified with polyvinylpyrrolidone, the surface of the particles was coated with metal organic framework MIL-100 (Fe) by one-step solution method. Finally, MIL-100(Fe) mesoporous shell with the large specific surface area and porous structure was loaded with sufficient anti-tumor drug doxorubicin (DOX). As a new type of photothermal agent with excellent performance, Cu2-xSe nanoparticles can be excited by the 1 064 nm light source in the second region of the near-infrared and take effect. At the same time, the heat generated by the nanoparticles also greatly improves the chemodynamic treatment effect of MIL-100 (Fe) and promotes the release of the anticancer drug doxorubicin. The constructed nano-platform can realize the synergy of three hypoxic tumor treatment strategies: photothermal therapy, thermally promoted chemodynamic therapy and and chemotherapy, which has great potential applications in the field of anti-cancer.-
Key words:
- Cu2-xSe nanoparticle /
- multi-modal anti-tumor /
- hypoxic tumor treatment .
-
[1] DEL VALLE A C, SU C K, SUN Y C, et al. NIR-Cleavable Drug Adducts of Gold Nanostars for Overcoming Multidrug-ResistantTumors[J]. Biomaterials Science, 2020, 8(7): 1934-1950. doi: 10.1039/C9BM01813A [2] LIN K, CAO Y, ZHENG D, et al. Facile Phase Transfer of Hydrophobic Fe3O4@Cu2-xS Nanoparticles by Red Blood Cell Membrane for MRI and Phototherapy in the Second Near-Infrared Window[J]. Journal of Materials Chemistry B, 2020, 8(6): 1202-1211. doi: 10.1039/C9TB02766A [3] doi: http://d.wanfangdata.com.cn/periodical/511b8a3a12ad9ea2cb3db5a9de566717 ZHANG C, SUN W, WANG Y, et al. Gd-/CuS-Loaded Functional for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy[J]. Acs Applied Materials & Interfaces, 2020, 12(8): 9107-9117. [4] LIU Z, QIU K, LIAO X, et al. Nucleus-Targeting Ultrasmall Ruthenium(iv) Oxide Nanoparticles for Photoacoustic Imaging and Low-Temperature Photothermal Therapy in the NIR-Ⅱ Window[J]. Chemical Communications, 2020, 56(20): 3019-3022. doi: 10.1039/C9CC09728G [5] 夏文鹏, 江莉, 胡珊珊. 镧系离子掺杂的AgY(MoO4)2上转换荧光粉的形貌调控及其温敏性研究[J]. 聊城大学学报(自然科学版), 2020, 33(5): 60-65. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202005009.htm [6] 焦体峰, 黄欣欣, 张乐欣, 等. 光热剂/光敏剂纳米材料合成及应用研究进展[J]. 燕山大学学报, 2017, 41(3): 189-203. doi: 10.3969/j.issn.1007-791X.2017.03.001 [7] 刘玉莲, 毛旖旎, 杨骏. 关于[CaY]F2: Yb3+, Er3+荧光粉的水热合成、上转换发光性质及温度传感能力的探究[J]. 聊城大学学报(自然科学版), 2020, 33(4): 39-44. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202004006.htm [8] BI H T, DAI Y L, XU J T, et al. CuS-Pt(Ⅳ)-PEG-FA Nanoparticles for Targeted Photothermal and Chemotherapy[J]. Journal of Materials Chemistry B, 2016, 4(35): 5938-5946. doi: 10.1039/C6TB01540A [9] 毛旖旎, 杨骏. 水热合成Ba3Sc2F12: Yb3+, Er3+荧光粉的形貌及其上转换发光性能的探究[J]. 聊城大学学报(自然科学版), 2020, 33(2): 68-72. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202002014.htm [10] 张洋, 夏继宏, 伏春平. 非金属掺杂对磷烯几何与电子结构的影响[J]. 西南师范大学学报(自然科学版), 2020, 45(9): 37-42. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202009007.htm [11] ZHANG H, CHEN Y, CAI Y, et al. Paramagnetic CuS Hollow Nanoflowers for T-2-FLAIR Magnetic Resonance Imaging-Guided Thermochemotherapy of Cancer[J]. Biomaterials Science, 2019, 7(1): 409-418. doi: 10.1039/C8BM01412D [12] YUAN Z, QU S, HE Y, et al. Thermosensitive Drug-Loading System Based on Copper Sulfide Nanoparticles for Combined Photothermal Therapy and Chemotherapy Invivo[J]. Biomaterials Science, 2018, 6(12): 3219-3230. doi: 10.1039/C8BM00799C [13] JIANG X, ZHANG S, REN F, et al. Ultrasmall Magnetic CuFeSe2 Ternary Nanocrystals for Multimodal Imaging Guided Photothermal Therapy of Cancer[J]. Acs Nano, 2017, 11(6): 5633-5645. doi: 10.1021/acsnano.7b01032 [14] 陆娟, 毛旖旎, 杨骏. Cu2-xSe-AIPH纳米材料的合成及体外抗癌性能研究[J]. 聊城大学学报(自然科学版), 2021, 34(1): 55-61. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202101008.htm [15] LIU Y, ZHU D, HU Y, et al. Controlled Synthesis of Cu2-xSe Nanoparticles as Near-Infrared Photothermal Agents and Irradiation Wavelength Dependence of Their Photothermal Conversion Efficiency[J]. Langmuir, 2018, 34(46): 13905-13909. doi: 10.1021/acs.langmuir.8b02133 [16] WU F, SUN B H, CHU X H, et al. Hyaluronic Acid-Modified Porous Carbon-Coated Fe3O4 Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal/Chemotherapy of Tumors[J]. Langmuir, 2019, 35(40): 13135-13144. doi: 10.1021/acs.langmuir.9b02300 [17] ZHANG L, GAO Y, SUN S, et al. pH-Responsive Metal-Organic Framework Encapsulated Gold Nanoclusters with Modulated Release to Enhance Photodynamic Therapy/Chemotherapy in Breast Cancer[J]. Journal of Materials Chemistry B, 2020, 8(8): 1739-1747. doi: 10.1039/C9TB02621E [18] WANG Q, ZHANG X, SUN Y, et al. Gold-Caged Copolymer Nanoparticles as Multimodal Synergistic Photodynamic/Photothermal/Chemotherapy Platform Against Lethality androgen-Resistant Prostate Cancer[J]. Biomaterials, 2019, 212: 73-86. doi: 10.1016/j.biomaterials.2019.05.009 [19] VAKILI-GHARTAVOL R, REZAYAT S M, FARIDI-MAJIDI R, et al. Optimization of Docetaxel Loading Conditions in Liposomes: Proposing Potential Products for Metastatic Breast Carcinomachemotherapy[J]. Scientific Reports, 2020, 10(1): 5569-5569. doi: 10.1038/s41598-020-62501-1 [20] HUANG Y J, JIANG Y L, XIAO Z H, et al. Three Birds with One Stone: A Ferric Pyrophosphate Based Nanoagent for Synergetic NIR-Triggered Photo/Chemodynamic Therapy with Glutathionedepletion[J]. Chemical Engineering Journal, 2020, 380: 122369-1-122369-14. [21] doi: http://www.ncbi.nlm.nih.gov/pubmed/31252482 LIU X H, LIU Y, WANG J N, et al. Mild Hyperthermia-Enhanced Enzyme-Mediated Tumor Cell Chemodynamictherapy[J]. Acs Applied Materials & Interfaces, 2019, 11(26): 23065-23071. [22] doi: http://www.sciencedirect.com/science/article/pii/S092777572030090X WANG Y, ZHANG H, XIE J, et al. Three Dimensional Mesoporous Carbon Nanospheres as Carriers for Chemo-Photothermal Therapy Compared with Two Dimensional Graphene Oxidenanosheets[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020, 590: 124498. [23] JIANG W, CHEN J, GONG C, et al. Intravenous Delivery of Enzalutamide Based on High Drug Loading Multifunctional Graphene Oxide Nanoparticles for Castration-Resistant Prostate Cancertherapy[J]. Journal of Nanobiotechnology, 2020, 18(1): 50-50. doi: 10.1186/s12951-020-00607-4 [24] 李鹏熙, 刘忠洪, 杨玲玲, 等. 多肽修饰的还原敏感型靶向光敏剂的合成及生物活性评价[J]. 西南师范大学学报(自然科学版), 2019, 44(268): 23-29. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201907005.htm [25] 张越, 桑幼, 黄承志. 负电铂纳米颗粒与α, β, γ, δ-四(N-甲基-3-吡啶基)卟啉间的相互作用研究[J]. 西南师范大学学报(自然科学版), 2016, 41(230): 8-12. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201605002.htm