-
开放科学(资源服务)标志码(OSID):
-
组蛋白修饰是最重要的表观遗传修饰标记之一,在控制基因表达和细胞谱系规范中起到关键作用[1-3]. 已有研究表明,组蛋白甲基化对早期胚胎发育和胚胎干细胞多能性的维持具有重要作用[4]. 组蛋白甲基化发生在组蛋白的赖氨酸和精氨酸残基上,作用位点在其侧链.
在N原子上,常见位点有H3K4me3,H3K9me3和H3K27me3[5-6]. 其中,组蛋白H3第9位赖氨酸三甲基化(Histone H3K9 trimethylation,H3K9me3)与维持异染色质稳定和沉默、X染色体失活、印记相关基因抑制及细胞特异性的鉴定有关[7],也被认为是胚胎发育的关键障碍[8].
H3K9me3被证明是小鼠[9-10]、人类[11]和牛[12]重新编程中关键的一个表观遗传调节因子. 在小鼠GV卵母细胞中,H3K9me3的表达与组蛋白甲基转移酶的活性密切相关. BHPF(Bateosi High Pass Filter)处理通过影响细胞骨架结构、线粒体功能、氧化应激、细胞凋亡提高了H3K9me3的表达,从而降低了小鼠卵母细胞的成熟效率和卵母细胞的质量[13]. 大剂量真菌毒素导致小鼠卵母细胞H3K9me3水平升高,这可能是导致卵母细胞发育能力下降的原因之一[14]. 以上研究表明,适当降低H3K9me3的表达有利于卵母细胞体外成熟和早期胚胎发育.
H3K9me3在基因表达调控和卵母细胞生长中起重要作用[15],目前其在体外成熟猪卵母细胞和孤雌胚胎中的表达模式还鲜有报道. 毛壳素作为SUV39亚家族甲基转移酶的抑制剂,能够特异性抑制组蛋白甲基转移酶SUV39H1/2和G9A的活性,通过竞争性结合SUV39H1/2[16],与关键残基发生反应,从而调控H3K9me3水平,以此增强表观遗传重编程效率[17]. 因此,本实验通过在猪卵母细胞体外成熟过程中添加毛壳素,调控卵母细胞H3K9me3及其相关基因的表达. 研究结果有助于了解体外成熟卵母细胞和胚胎中H3K9me3表达的动态变化,并为改善猪卵母细胞成熟质量,提高胚胎发育效率奠定基础.
Effects of H3K9me3 in vitro on Maturation of Porcine Oocytes and Early Embryo Development
-
摘要: H3K9的异常甲基化被认为是影响胚胎发育障碍的主要表观遗传修饰之一. 毛壳素是H3K9me3的特异性抑制剂,能抑制其甲基转移酶SUV39H1/2和G9A的活性,下调H3K9me3水平. 本实验通过在猪卵母细胞体外成熟过程中添加毛壳素,探究调控H3K9me3对猪卵母细胞体外成熟和早期胚胎发育的影响. 在0~22 h用不同浓度毛壳素(0 nmol/L,2 nmol/L,5 nmol/L,10 nmol/L)处理猪卵母细胞,与未处理组相比,发现2 nmol/L毛壳素可显著提高卵母细胞的第一极体排出率(81.5% VS 72.62%),孤雌胚胎4-细胞率(74.43% VS 68.69%)和囊胚率(40.43% VS 27.48%)(p<0.05). qRT-PCR结果表明,与未处理组相比,2 nmol/L毛壳素显著降低卵母细胞中SUV39H1/2和G9A的表达,显著提高囊胚中Nanog,Oct4,CDX2的表达(p<0.05). 免疫荧光分析发现,与未处理组相比,2 nmol/L毛壳素显著降低囊胚中H3K9me3的表达(p<0.05),H3K9me3在GV期卵母细胞中有表达,在MI,MII期未检测到表达. 在0~44 h用不同浓度毛壳素(0 nmol/L,2 nmol/L,5 nmol/L,10 nmol/L)处理猪卵母细胞,未处理组与各处理组的卵裂率、4-细胞率、囊胚率及囊胚细胞总数均无差异不具有统计学意义(p>0.05). 5 nmol/L处理组的第一极体排出率显著提高(87.39% VS 71.95%,p<0.05). 以上结果表明,毛壳素可通过降低卵母细胞中SUV39H1/2和G9A的表达,上调囊胚中多能性基因Nanog,Oct4,CDX2的表达,调控H3K9me3的水平,从而促进猪卵母细胞体外成熟和早期胚胎发育.Abstract: Abnormal methylation of H3K9 is considered to be one of the main epigenetic modifications affecting embryonic developmental disorders. Chaetocin is a specific inhibitor of H3K9me3 that suppresses the activity of its methyltransferases, SUV39H1/2 and G9A, and down-regulate thelevel of H3K9me3. This experiment explored the effects of regulating H3K9me3 on in vitro maturation and early embryonic development by adding chaetocin during the in vitro maturation of porcine oocytes. Firstly, porcine oocytes were treated with different concentrations of chaetocin(0 nmol/L, 2 nmol/L, 5 nmol/L, 10 nmol/L) from 0-22 h. 2 nmol/L of chaetocin was found to significantly increase the discharge rate of first polar (81.5% VS 72.62%), 4-cell rate (74.43% VS 68.69%) and blastocyst rate(40.43% VS 27.48%) (p<0.05) compared to untreated group. qRT-PCR results showed that 2 nmol/L chaetocin significantly reduced expressionof SUV39H1/2 and G9A in oocytes and significantly improvedexpressionof Nanog, Oct4, CDX2 compared to the blastocyst (p<0.05). Immunofluorescence assays found that 2 nmol/L chaetocin significantly reduced the expression of H3K9me3 in the blastocyst compared to the untreated group (p<0.05). H3K9me3 was expressed in GV oocytes with no significant differences (p > 0.05) that of control, but it was not detected in MI and MII phases. Porcine oocytes were treated with different concentrations of chaetocin (0 nmol/L, 2 nmol/L, 5 nmol/L, 10 nmol/L) from 0-44 h, but no significant differences were found in cleavage rate, 4-cell rate, blastocyst rate and total cystocytescompared to the untreated group (p > 0.05). The first pole discharge rate increased significantly in the 5 nmol/L treatment group (87.39% VS 71.95%, p<0.05). The above results show that chaetocin can regulate the level of H3K9me3 by reducing the expression of SUV39H1/2 and G9A in oocytes, upregulating the expression of the multipotent gene Nanog, Oct4, CDX2 in blastocyst to regulate the level of H3K9me3, thereby promoting in vitro maturation and early embryo development of porcine.
-
Key words:
- SUV39H1/2 /
- H3K9me3 /
- embryonic development /
- oocyte maturation .
-
表 1 毛壳素处理对猪卵母细胞体外成熟和早期胚胎发育的影响
处理组/
(nmol·L-1)卵母细胞总数n=4 第一极体排出率/
%卵裂率/
%(≥2-cell)4-细胞率/
%(≥4-cell)囊胚率/
%囊胚细胞总数 0 132(4) 96(72.73±1.81)a 70(72.92±7.78)a 65(67.71±3.40)a 26(27.08±1.47)a 45.31ab±4.67 2 136(4) 110(80.88±2.22)b 87(79.09±8.24)a 81(73.64±3.46)b 44(40.00±2.72)b 50.66b±2.16 5 140(4) 98(70.00±3.76)a 75(76.53±1.42)a 69(70.41±5.40)a 33(33.67±4.78)ab 39.00a±1.47 10 139(4) 101(72.66±2.18)a 73(72.28±5.57)a 69(68.32±2.40)a 25(24.75±3.57)a 39.59a±1.79 注:表 1中不同字母代表同列数据差异具有统计学意义(p<0.05). 表 2 [22~44] h毛壳素处理对猪卵母细胞体外成熟和早期胚胎发育的影响
处理组/
(nmol·L-1)卵母细胞总数n=3 第一极体排出数/
%卵裂率/
%(≥2-cell)4-细胞率/
%(≥4-cell)囊胚率/
%囊胚细胞总数 0 89(3) 64(71.91±2.74)Aa 48(75.00±6.25)a 46(71.88±4.73)a 21(32.81±5.26)a 46.68a±3.65 2 96(3) 75(78.13±3.56)ab 57(76.00±1.09)a 53(70.67±3.40)a 26(34.66±8.45)a 42.80a±4.94 5 95(3) 83(87.37±3.07)Bb 58(69.88±4.84)a 52(62.65±1.39)a 30(36.14±8.59)a 45.17a±6.78 10 99(3) 77(77.78±1.15)a 54(70.13±3.08)a 54(70.13±4.98)a 17(22.08±6.73)a 41.72a±3.18 注:表 2中不同字母代表同列数据差异具有统计学意义(p<0.05). -
[1] doi: https://mayoclinic.pure.elsevier.com/en/publications/dna-methylation-in-development-and-human-disease GOPALAKRISHNAN S, VAN EMBURGH B O, ROBERTSON K D. DNA Methylation in Development and Human Disease[J]. Mutation Research, 2008, 647(1/2): 30-38. [2] SANTOS F, PETERS A H, OTTE A P, et al. Dynamic Chromatin Modifications Characterise the First Cell Cycle in Mouse Embryos[J]. Developmental Biology, 2005, 280(1): 225-236. doi: 10.1016/j.ydbio.2005.01.025 [3] 贺小英, 荆乾鸽, 姜欣颖, 等. 端粒酶与体细胞重编程的最新研究进展[J]. 南方农业学报, 2019, 50(5): 1133-1140. doi: 10.3969/j.issn.2095-1191.2019.05.30 [4] TORRES-PADILLA M E, PARFITT D E, KOUZARIDES T, et al. Histone Arginine Methylation Regulates Pluripotency in the Early Mouse Embryo[J]. Nature, 2007, 445(7124): 214-218. doi: 10.1038/nature05458 [5] IGOLKINA A A, ZINKEVICH A, KARANDASHEVA K O, et al. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks[J]. Cells, 2019, 8(9): 1034. doi: 10.3390/cells8091034 [6] KUSHWAHA A, THAKUR M K. Increase in Hippocampal Histone H3K9me3 is Negatively Correlated with Memory in Old Male Mice[J]. Biogerontology, 2020, 21(2): 175-189. doi: 10.1007/s10522-019-09850-1 [7] BENVENISTE D, SONNTAG H J, SANGUINETTI G, et al. Transcription Factor Binding Predicts Histone Modifications in Human Cell Lines[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): 13367-13372. doi: 10.1073/pnas.1412081111 [8] RUAN D G, PENG J Y, WANG X S, et al. XIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer[J]. Stem Cell Reports, 2018, 10(2): 494-508. doi: 10.1016/j.stemcr.2017.12.015 [9] MATOBA S, LIU Y T, LU F L, et al. Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation[J]. Cell, 2014, 159(4): 884-895. doi: 10.1016/j.cell.2014.09.055 [10] doi: https://pubmed.ncbi.nlm.nih.gov/27462457/ LIU W, LIU X, WANG C, et al. Identification of Key Factors Conquering Developmental Arrest of Somatic Cell Cloned Embryos by Combining Embryo Biopsy and Single-Cell Sequencing[J]. Cell Discovery, 2016, 2: 16010. [11] CHUNG Y G, MATOBA S, LIU Y T, et al. Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells[J]. Cell Stem Cell, 2015, 17(6): 758-766. doi: 10.1016/j.stem.2015.10.001 [12] 马盼盼. PsA对牛克隆胚胎早期发育的影响作用研究[D]. 长春: 吉林农业大学, 2019. [13] JIAO X F, LIANG Q M, WU D, et al. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in Vitro Maturation and Its Possible Mechanisms[J]. Environmental and Molecular Mutagenesis, 2019, 60(3): 243-253. doi: 10.1002/em.22258 [14] ZHU C C, HOU Y J, HAN J, et al. Effect of Mycotoxin-Containing Diets on Epigenetic Modifications of Mouse Oocytes by Fluorescence Microscopy Analysis[J]. Microscopy and Microanalysis, 2014, 20(4): 1158-1166. doi: 10.1017/S1431927614000919 [15] QIAO J, CHEN Y, YAN L Y, et al. Changes in Histone Methylation during Human Oocyte Maturation and IVF-or ICSI-Derived Embryo Development[J]. Fertility and Sterility, 2010, 93(5): 1628-1636. doi: 10.1016/j.fertnstert.2009.03.002 [16] GREINER D, BONALDI T, ESKELAND R, et al. Identification of a Specific Inhibitor of the Histone Methyltransferase SU (VAR)3-9[J]. Nature Chemical Biology, 2005, 1(3): 143-145. doi: 10.1038/nchembio721 [17] JEONG P S, SIM B W, PARK S H, et al. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity[J]. International Journal of Molecular Sciences, 2020, 21(14): 4836. doi: 10.3390/ijms21144836 [18] MATOBA S, ZHANG Y. Somatic Cell Nuclear Transfer Reprogramming: Mechanisms and Applications[J]. Cell Stem Cell, 2018, 23(4): 471-485. doi: 10.1016/j.stem.2018.06.018 [19] SANKAR A, LERDRUP M, MANAF A, et al. KDM4A Regulates the Maternal-to-Zygotic Transition by Protecting Broad H3K4me3 Domains from H3K9me3 Invasion in Oocytes[J]. Nature Cell Biology, 2020, 22(4): 380-388. doi: 10.1038/s41556-020-0494-z [20] WENG X G, CAI M M, ZHANG Y T, et al. Improvement in the in Vitro Development of Cloned Pig Embryos after Kdm4a Overexpression and an H3K9me3 Methyltransferase Inhibitor Treatment[J]. Theriogenology, 2020, 146: 162-170. doi: 10.1016/j.theriogenology.2019.11.027 [21] 沈开元. MG132对猪卵母细胞体外成熟及德保黑猪核移植胚胎发育的影响初步研究[D]. 南宁: 广西大学, 2016. [22] ZHANG Y M, GAO E N, WANG Q Q, et al. Effects of Histone Methyltransferase Inhibitor Chaetocin on Histone H3K9 Methylation of Cultured Ovine Somatic Cells and Development of Preimplantation Cloned Embryos[J]. Reproductive Toxicology, 2018, 79: 124-131. doi: 10.1016/j.reprotox.2018.06.006 [23] 李海艳. 毛壳素对德保黑猪核移植胚胎体外发育潜能影响的初步研究[D]. 南宁: 广西大学, 2017.