-
开放科学(资源服务)标志码(OSID):
-
蚊子是世界上最致命的动物之一,由其传播的疾病每年导致数百万人死亡[1]. 因此,持续的蚊虫控制工作对于预防这些疾病的爆发非常重要.
Wolbachia是一种革兰氏阴性菌,是世界上分布最为广泛的共生菌,并且可以人工植入埃及伊蚊体内[2]. 研究发现Wolbachia可以抑制登革热病毒在蚊子体内的复制并且可以降低病毒的传染性[3],故使用Wolbachia控制蚊媒传染病的传播备受关注. Wolbachia对蚊子的繁殖影响主要有:垂直传播和细胞质分离(CI),即携带Wolbachia的雌性的下一代也会携带此种菌,正常雌性与携带Wolbachia的雄性的下一代会因细胞质分离而死亡.
近年来,许多文献利用数学模型研究了Wolbachia在蚊虫种群中的传播. 文献[4]提出并分析了Wolbachia感染蚊子种群与未感染蚊子种群之间的基本竞争模型,然后,利用反馈控制技术设计了Wolbachia的引入方案. 文献[5-7]分别建立了具有脉冲一般出生和死亡率函数的脉冲模型、具有脉冲出生和投放的性别结构和状态依赖脉冲的综合控制模型,对使用Wolbachia控制蚊媒传染病的各种控制策略进行了研究. 文献[8]考虑了环境的异质性,建立了两种机制随机切换的数学模型. 研究发现:在均匀环境中维持的Wolbachia的初始状态在异质环境中会灭绝,频繁的环境转换有利于Wolbachia的传播. 此外,文献[9-11]等都讨论了宿主、媒介和疾病之间的相互作用.
本文将建立具有成熟时滞的蚊子种群模型,通过理论分析和数值模拟讨论时滞对Wolbachia传播的影响.
Study on the Influence of Maturation Delay on Spread of Wolbachia in Mosquito Population
-
摘要: 建立了一个Wolbachia在蚊子种群中的传播模型,并考虑蚊子种群的成熟时滞,主要研究时滞对Wolbachia传播的影响. 首先,通过理论分析发现零解是不稳定的;其次,理论分析了常数时滞对模型动力学行为的影响,发现Wolbachia会完全入侵蚊子种群;最后,通过数值模拟讨论了周期时滞对模型动力学行为的影响,发现Wolbachia部分替代周期解和完全替代周期解都有可能存在,与出生率和历史值有关.Abstract: In this paper, a propagation model of Wolbachia in mosquito population is established. The maturation delay of mosquito population is considered, and the influence of delay on Wolbachia propagation is mainly studied. Firstly, theoretical analysis revealed that the zero solution is unstable. Secondly, analyzing the influence of constant delay on the dynamic behavior of the model indicated that Wolbachia could completely invade the mosquito population. Finally, the influence of periodic delay on the dynamic behavior of the model is discussed by numerical simulation. It is found that both partial and complete alternative periodic solutions of Wolbachia are possible, which are related to birth rate and historical value.
-
Key words:
- mosquito population /
- maturation delay /
- Wolbachia /
- stability /
- periodic solution .
-
表 1 图 1a结果对比
解趋于稳定的速度 蚊子总量 有时滞 较慢 较少 无时滞 较快 较多 -
[1] WORLD HEALTH ORGANIZATION. Mosquito-Borne Diseases[EB/OL]. (2020-03-02)[2020-04-29]. https://www.who.int/neglecteddiseases/vectorecology/mosquito-borne-diseases/en/. [2] HOFFMANN A A, MONTGOMERY B L, POPOVICI J, et al. Successful Establishment of Wolbachia in Aedes Populations to Suppress Dengue Transmission[J]. Nature, 2011, 476(7361): 454-457. doi: 10.1038/nature10356 [3] WALKER T, JOHNSON P H, MOREIRA L A, et al. The wMel Wolbachia Strain Blocks Dengue and Invades Caged Aedes Aegypti Populations[J]. Nature, 2011, 476(7361): 450-453. doi: 10.1038/nature10355 [4] BLIMAN P A, ARONNA M S, COELHO F C, et al. Ensuring Successful Introduction of Wolbachia in Natural Populations of Aedes Aegypti by Means of Feedback Control[J]. Journal of Mathematical Biology, 2018, 76(5): 1269-1300. doi: 10.1007/s00285-017-1174-x [5] LI Y Z, LIU X N. An Impulsive Model for Wolbachia Infection Control of Mosquito-Borne Diseases with General Birth and Death Rate Functions[J]. Nonlinear Analysis: Real World Applications, 2017, 37: 412-432. doi: 10.1016/j.nonrwa.2017.03.003 [6] LI Y Z, LIU X N. A Sex-Structured Model with Birth Pulse and Release Strategy for the Spread of Wolbachia in Mosquito Population[J]. Journal of Theoretical Biology, 2018, 448: 53-65. doi: 10.1016/j.jtbi.2018.04.001 [7] LI Y Z, LIU X N. Modeling and Control of Mosquito-Borne Diseases with Wolbachia and Insecticides[J]. Theoretical Population Biology, 2020, 132: 82-91. doi: 10.1016/j.tpb.2019.12.007 [8] 王艳, 刘贤宁. 基孔肯雅病毒在宿主体内的时滞动力学模型[J]. 西南大学学报(自然科学版), 2016, 38(5): 80-85. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2016.05.014 [9] 李艳, 王稳地, 周爱蓉, 等. 具有隐性感染的登革热模型稳定性分析[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 1-5. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201805002.htm [10] HU L C, HUANG M G, TANG M X, et al. Wolbachia Spread Dynamics in Stochastic Environments[J]. Theoretical Population Biology, 2015, 106: 32-44. doi: 10.1016/j.tpb.2015.09.003 [11] BACA-CARRASCO D, VELASCO-HERNÁNDEZ J X. Sex, Mosquitoes and Epidemics: an Evaluation of Zika Disease Dynamics[J]. Bulletin of Mathematical Biology, 2016, 78(11): 2228-2242. doi: 10.1007/s11538-016-0219-4 [12] FARKAS J Z, HINOW P. Structured and Unstructured Continuous Models for Wolbachia Infections[J]. Bulletin of Mathematical Biology, 2010, 72(8): 2067-2088. doi: 10.1007/s11538-010-9528-1 [13] LOU Y J, ZHAO X Q. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations[J]. Journal of Nonlinear Science, 2017, 27(2): 573-603. doi: 10.1007/s00332-016-9344-3