-
开放科学(资源服务)标志码(OSID):
-
柑橘作为世界第一大水果,具有重要的经济价值. 自加入世贸组织以来,中国柑橘种植面积和产量增长迅速. 截至2019年,中国柑橘栽培面积为277万hm2,产量达4 584万t(2020年国家统计局数据),均位列世界首位,柑橘已成为全面实现乡村振兴的重要支柱产业. 柑橘在生产过程中受到多种因素的影响,其中由柑橘衰退病毒(Citrus tristeza virus,CTV)引起的柑橘衰退病是制约世界柑橘产业发展的一个重要因素.
CTV为长线形病毒科(Closteroviridae)长线形病毒属(Closterovirus)成员,主要通过嫁接和蚜虫进行传播. CTV基因组为一条约19 260 nt的正义单链RNA,包含两个非编码区和12个开放阅读框(ORFs),是已知最大的植物病毒[1]. CTV在田间具有复杂的株系分化现象,根据其症状差异,分为苗黄、速衰和茎陷点3种主要类型[2-4]. 同时,根据其基因组序列的变异被分为T36,VT,T30,T3,RB,T68,HA16-5和S1等多个基因型[1, 5-8]. 其中,T36与VT基因型通常与速衰症状相关,T3,VT,RB和T68基因型与茎陷点症状相关联[9-14],而S1和T30基因型通常不引起明显的症状[6, 15]. 由于CTV全序列测定的难度较大,因此ORF1a,5′UTR,RdRp等区域常被作为CTV分型的重要靶标,其中因ORF1a的多样性最为丰富,是目前使用较多的CTV分型依据[5, 16-18].
虽然CTV在中国的分布极为广泛,但由于长期以来大量使用枳、酸橙、红橘等抗耐砧木,速衰型衰退病仅在云南的宾川、建水等地有过少量发生[19]. 茎陷点型衰退病对中国柑橘产业为害较为严重,曾对四川、重庆等地的甜橙品种造成了严重损失[20]. 近年来茎陷点型衰退病在我国最重要的脐橙产区——江西赣州暴发,导致脐橙生长缓慢、树势减弱、产量和品质降低,损失严重. 前期研究显示,赣州CTV发生较为普遍,虽多为VT和T36基因型混合发生,但未曾对脐橙产业造成严重危害[21-23]. 因此,本研究拟通过研究赣州CTV种群的基因型构成及变化,以期为进一步探明江西赣州茎陷点型衰退病暴发的原因提供理论基础.
Dramatic Change in Citrus tristeza virus Population in Ganzhou, Jiangxi Province
-
摘要: 通过研究柑橘衰退病毒(Citrus tristeza virus,CTV)的种群构成,探究江西赣州纽荷尔脐橙上茎陷点型衰退病暴发的原因. 从赣州的10个区县采集了199份疑似感染了CTV的纽荷尔脐橙样品,对阳性样品进行了8种基因型的检测,结果发现,有112份样品感染了CTV,且均含有2种及2种以上的基因型. 最常见的基因型组合为T36+VT+T3+T30+S1+RB和T36+VT+T3+T68,分别占总数的13.4%和9.8%. 与2004-2007年采集的CTV样品相比,2019-2020年采集的样品中新出现了RB,T30和HA16-5基因型,且T36和RB基因型的检出率显著上升. 赣州CTV的种群结构发生了改变,RB和HA16-5基因型可能是引起赣州纽荷尔脐橙上茎陷点型衰退病暴发的原因.Abstract: Severe stem pitting isolates of Citrus tristeza virus (CTV) are of economic importance to global citrus industry. The aim of this study was to apply genotype detection to investigate the cause of an outbreak of severe stem pitting in navel orange occurred recently in Ganzhou, Jiangxi province, which is one of the most famous navel orange production areas in the world. A total of 199 navel orange samples were collected from 10 counties in Ganzhou and tested for CTV by RT-PCR. The genotypes of CTV in infected samples were assessed. Among these, 112 tested positive for CTV, and most of CTV isolates were the mixture of two or more genotypes. The most common mix of genotypes were T36+VT+T3+T30+S1+RB and T36+VT+T3+T68 with occurrences of 13.4% and 9.8%, respectively. These results demonstrated a dramatic change in CTV populations, with the presence of three emerging genotypes (RB, T30 and HA16-5). Furthermore, the detection rates of T36 and RB genotypes have significantly increased. The population structure of CTV have changed. The outbreak of stem pitting in Ganzhou may be due to the emerging of RB and HA16-5 genotypes.
-
Key words:
- Citrus tristeza virus /
- genotype /
- population composition .
-
表 1 江西赣州脐橙上柑橘衰退病毒检出率
采集地 阳性数/总数 检出率/% 采集地 阳性数/总数 检出率/% 崇义 2/9 22.2 安远 3/6 50.0 南康 3/12 25.0 大余 14/31 45.2 寻乌 19/29 65.5 赣县 5/11 45.5 章贡 9/12 75.0 龙南 13/36 36.1 会昌 43/50 86.0 信丰 1/3 33.3 表 2 江西赣州脐橙上柑橘衰退病毒基因型种类
CTV基因型 2004-2007年采集 2019-2020年采集 采集样品数 对应基因型样品比例/% 采集样品数 对应基因型样品比例/% T36 1 11.1 111 99.1 VT 9 100.0 106 94.6 T3 9 100.0 107 95.5 T68 3 33.3 65 58.0 T30 0 0.0 34 30.4 S1 2 22.2 50 44.6 RB 0 0.0 75 67.0 HA16-5 0 0.0 21 18.8 表 3 江西赣州脐橙上柑橘衰退病毒基因型构成情况
茎陷点症状分级 2004-2007年基因型组合(样品数) 2019年基因型组合(样品数) 2020年基因型组合(样品数) 2020年基因型组合(样品数) 0~1 T36+VT+T3(1) T36+VT+T3(2) T36+VT+T3(1) T36+VT+T3+T30+T68+RB+HA16-5(2) VT+T3(3) VT+T3+T68+T30+RB(1) T36+T3+T30+S1+RB(1) T36+VT+T3+T30+T68+S1(3) VT+T3+S1(2) T36+VT+T3+RB(1) T36+VT+T3+HA16-5(1) T36+VT+T3+T30+T68+S1+RB(1) VT+T3+T68(3) T36+VT+T30+RB(1) T36+VT+T3+S1(1) T36+VT+T3+T68(8) T36+VT+T3+T30+RB(2) T36+VT+T3+T68+HA16-5(2) T36+VT+T3+T30+S1(3) T36+VT+T3+T68+HA16-5+RB(1) T36+VT+T3+T30+S1+RB(10) T36+VT+T3+T68+RB(1) T36+VT+T3+T30+T68+RB(3) T36+VT+T3+T68+S1(3) T36+VT+T68+HA16-5(1) T36+VT+T3+T68+S1+RB(1) T36+VT+T3+T68+T30+S1+RB(7) 2 T36+VT+T3+T68+T30(1) T36+VT+T3+T30+S1+RB(4) T36+T3+T30+S1(1) T36+VT+T3+T68+S1+RB+HA16-5(1) T36+VT+T3+T68+RB+HA16-5(3) 3 T36+RB(1) T36+VT+T3+T68+RB+HA16-5(4) T36+T3+T30+RB(1) T36+VT+T3+T68+S1+RB+HA16-5(3) T36+T30+VT+RB(1) T36+VT+T3+T68(2) T36+VT+RB+T3+S1(1) T36+VT+T3+S1+RB(1) T36+VT+T3(2) T36+VT+T3+RB(8) T36+VT+T3+RB+HA16-5(2) T36+VT+T3+S1(1) T36+VT+T3+S1+RB(4) T36+VT+T3+T30+S1(1) T36+VT+T3+T30+S1+RB(1) T36+VT+T3+T68(1) T36+VT+T3+T68+RB(2) T36+VT+T3+T68+RB+HA16-5(1) T36+VT+T3+T68+S1+RB(4) T36+VT+T30+RB(1) T36+VT+T68+RB+HA16-5(1) VT+T3(1) -
[1] KARASEV A V, BOYKO V P, GOWDA S, et al. Complete Sequence of the Citrus tristeza virus RNA Genome[J]. Virology, 1995, 208(2): 511-520. doi: 10.1006/viro.1995.1182 [2] GARNSEY S M, GUMPF D J, ROISTACHER C N, et al. Toward a Standardized Evaluation of the Biological Properties of Citrus tristeza virus[J]. Phytophylactica, 1987, 19(2): 151-158. [3] BAR-JOSEPH M, MARCUS R, LEE R F. The Continuous Challenge of Citrus tristeza virus Control[J]. Annual Review of Phytopathology, 1989, 27: 291-316. doi: 10.1146/annurev.py.27.090189.001451 [4] BROADBENT P. Biological Characterization of Australian Isolates of Citrus tristeza virus and Separation of Subisolates by Single aphid Transmissions[J]. Plant Disease, 1996, 80(3): 329. doi: 10.1094/PD-80-0329 [5] MAWASSI M, MIETKIEWSKA E, GOFMAN R, et al. Unusual Sequence Relationships between Two Isolates of Citrus tristeza virus[J]. The Journal of General Virology, 1996, 77 (9): 2359-2364. doi: 10.1099/0022-1317-77-9-2359 [6] ALBIACH-MARTÍ M R, MAWASSI M, GOWDA S, et al. Sequences of Citrus tristeza virus Separated in Time and Space are Essentially Identical[J]. Journal of Virology, 2000, 74(15): 6856-6865. doi: 10.1128/JVI.74.15.6856-6865.2000 [7] HARPER S J, DAWSON T E, PEARSON M N. Isolates of Citrus tristeza virus that Overcome Poncirus Trifoliata Resistance Comprise a Novel Strain[J]. Archives of Virology, 2010, 155(4): 471-480. doi: 10.1007/s00705-010-0604-5 [8] HARPER S J. Citrus tristeza viru: Evolution of Complex and Varied Genotypic Groups[J]. Frontiers in Microbiology, 2013, 4: 93. [9] GARNSEY S M, CIVEROLO E L, GUMPF D J, et al. Biological Characterization of an International Collection of Citrus tristeza virus (CTV) Isolates[J]. International Organization of Citrus Virologists Conference Proceedings (1957-2010), 2005, 16(16): 75-93. doi: 10.5070/C53NJ1R1GT [10] YANG Z N, MATHEWS D M, DODDS J A, et al. Molecular Characterization of an Isolate of Citrus tristeza virus that Causes Severe Symptoms in Sweet Orange[J]. Virus Genes, 1999, 19(2): 131-142. doi: 10.1023/A:1008127224147 [11] ROISTACHER C N, MORENO P. The Worldwide Threat from Destructive Isolates of Citrus tristeza virus a Review[J]. International Organization of Citrus Virologists Conference Proceedings (1957-2010), 1991, 11(11): 7-19. [12] DAWSON T E, MOONEY P A. Evidence for Trifoliate Resistance Breaking Isolates of Citrus tristeza virus New Zealand[J]. International Organization of Citrus Virologists Conference Proceedings (1957-2010), 2000, 14(14): 69-76. [13] HILF M E, MAVRODIEVA V A, GARNSEY S M. Genetic Marker Analysis of a Global Collection of Isolates of Citrus tristeza virus: Characterization and Distribution of CTV Genotypes and Association with Symptoms[J]. Phytopathology, 2005, 95(8): 909-917. doi: 10.1094/PHYTO-95-0909 [14] COOK G, VAN VUUREN S P, BREYTENBACH J H J, et al. Characterization of Citrus tristeza virus Single-Variant Sources in Grapefruit in Greenhouse and Field Trials[J]. Plant Disease, 2016, 100(11): 2251-2256. doi: 10.1094/PDIS-03-16-0391-RE [15] YOKOMI R, SELVARAJ V, MAHESHWARI Y, et al. Molecular and Biological Characterization of a Novel Mild Strain of Citrus tristeza virus in California[J]. Archives of Virology, 2018, 163(7): 1795-1804. doi: 10.1007/s00705-018-3799-5 [16] ROY A, BRLANSKY R H. Genome Analysis of an Orange Stem Pitting Citrus tristeza virus Isolate Reveals a Novel Recombinant Genotype[J]. Virus Research, 2010, 151(2): 118-130. doi: 10.1016/j.virusres.2010.03.017 [17] READ D A, PIETERSEN G. PCR Bias Associated with Conserved Primer Binding Sites, Used to Determine Genotype Diversity within Citrus tristeza virus Populations[J]. Journal of Virological Methods, 2016, 237: 107-113. doi: 10.1016/j.jviromet.2016.09.004 [18] COOK G, VAN VUUREN S P, BREYTENBACH J H J, et al. Expanded Strain-Specific RT-PCR Assay for Differential Detection of Currently Known Citrus tristeza virus Strains: a Useful Screening Tool[J]. Journal of Phytopathology, 2016, 164(10): 847-851. doi: 10.1111/jph.12454 [19] 赵学源, 蒋元晖, 张权炳, 等. 柑桔苗黄型衰退病毒的分布概况和六种酸橙类砧木对它的反应[J]. 植物病理学报, 1979, 9(1): 61-64. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL197901010.htm [20] 周常勇, 赵学源, 蒋元晖, 等. 柚矮化病调查和病原鉴定[J]. 中国南方果树, 1998, 27(3): 20-21. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-FRUI803.014.htm [21] 陶珍珍, 易龙, 卢占军, 等. 赣南脐橙主产区柑橘衰退病发病率调查研究[J]. 中国农学通报, 2011, 27(16): 297-300. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201116061.htm [22] 夏宜林. 江西野生柑橘与栽培柑橘上衰退病毒种群进化特征分析[D]. 赣州: 赣南师范大学, 2019. [23] 刘志芳. 赣南地区柑橘衰退病毒遗传多样性及基因型分析[D]. 赣州: 赣南师范学院, 2015. [24] TATINENI S, DAWSON W O. Enhancement or Attenuation of Disease by Deletion of Genes from Citrus tristeza virus[J]. Journal of Virology, 2012, 86(15): 7850-7857. doi: 10.1128/JVI.00916-12 [25] ALBIACH-MARTI M R, ROBERTSON C, GOWDA S, et al. The Pathogenicity Determinant of Citrus tristeza virus Causing the Seedling Yellows Syndrome Maps at the 3'-Terminal Region of the Viral Genome[J]. Molecular Plant Pathology, 2010, 11(1): 55-67. doi: 10.1111/j.1364-3703.2009.00572.x [26] HARPER S, COWELL S J, DAWSON W. Changes in Host microRNA Expression during Citrus tristeza virus Induced Disease[J]. Journal of Citrus Pathology, 2019, 6(1): 15-24. [27] MARTÍN S, SAMBADE A, RUBIO L, et al. Contribution of Recombination and Selection to Molecular Evolution of Citrus Tristeza virus[J]. The Journal of General Virology, 2009, 90(6): 1527-1538. doi: 10.1099/vir.0.008193-0
计量
- 文章访问数: 719
- HTML全文浏览数: 719
- PDF下载数: 116
- 施引文献: 0