留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

L-色氨酸-Hg2+-青霉胺体系的荧光光谱及分析应用

上一篇

下一篇

闫晶晶, 张甜, 胡咏梅, 等. L-色氨酸-Hg2+-青霉胺体系的荧光光谱及分析应用[J]. 西南大学学报(自然科学版), 2022, 44(5): 119-124. doi: 10.13718/j.cnki.xdzk.2022.05.014
引用本文: 闫晶晶, 张甜, 胡咏梅, 等. L-色氨酸-Hg2+-青霉胺体系的荧光光谱及分析应用[J]. 西南大学学报(自然科学版), 2022, 44(5): 119-124. doi: 10.13718/j.cnki.xdzk.2022.05.014
YAN Jingjing, ZHANG Tian, HU Yongmei, et al. Fluorescence Spectra and Analytical Applications of L-tryptophan-Hg2+-penicillamine System[J]. Journal of Southwest University Natural Science Edition, 2022, 44(5): 119-124. doi: 10.13718/j.cnki.xdzk.2022.05.014
Citation: YAN Jingjing, ZHANG Tian, HU Yongmei, et al. Fluorescence Spectra and Analytical Applications of L-tryptophan-Hg2+-penicillamine System[J]. Journal of Southwest University Natural Science Edition, 2022, 44(5): 119-124. doi: 10.13718/j.cnki.xdzk.2022.05.014

L-色氨酸-Hg2+-青霉胺体系的荧光光谱及分析应用

  • 基金项目: 国家自然科学基金项目(21705132);成都市卫生健康委员会资助项目(2021029)
详细信息
    作者简介:

    闫晶晶,硕士研究生,主要从事分子光谱研究 .

    通讯作者: 胡咏梅:主任医师;  胡小莉,教授
  • 中图分类号: O657.3

Fluorescence Spectra and Analytical Applications of L-tryptophan-Hg2+-penicillamine System

  • 摘要: 基于L-色氨酸(L-Trp)荧光猝灭与恢复,建立了一种高灵敏度、高选择性检测D-青霉胺(D-PA)的荧光分析方法. 实验发现在pH=4.8的缓冲溶液中,Hg2+与L-Trp中的羧基结合,猝灭L-Trp的荧光. 随着D-PA的加入,由于Hg2+与D-PA的巯基产生更强的螯合作用,导致Hg2+脱离L-Try,后者荧光恢复. 据此设计了IMPLICATION逻辑门,并用于D-PA的检测. 在优化条件下,荧光恢复程度与D-PA浓度在0.44~50.0 μmol/L范围内呈良好的线性关系,检出限为0.13 μmol/L. 该方法用于青霉胺药片含量的测定,结果满意.
  • 加载中
  • 图 1  L-Trp测定D-PA的反应机理

    图 2  L-Trp-Hg2+-D-PA体系的荧光光谱

    图 3  pH值对反应体系荧光强度的影响

    图 4  Hg2+浓度对L-Trp荧光强度的影响

    图 5  离子强度的影响

    图 6  探针对不同浓度D-PA的荧光响应

    图 7  IMPLICATION逻辑图

    表 1  共存物质的影响(cD-PA=5.0×10-5 mol/L)

    共存物 浓度/(×10-5 mol·L-1) 相对误差/% 共存物 浓度/(×10-5 mol·L-1) 相对误差/%
    KAl(SO4)2 500.0 -3.2 NH4Cl 750.0 -2.6
    Fe2(SO4)3 380.0 3.9 NaF 600.0 3.2
    CoSO4 460.0 -4.4 淀粉 710 3.7
    CuSO4 50.0 -4.0 果糖 500.0 4.5
    ZnSO4 530.0 4.8 葡糖糖 450.0 5.0
    NiSO4 500.0 3.5 精氨酸 30.0 -4.8
    PdCl2 70.0 4.1 甘氨酸 100.0 -3.6
    MnSO4 450.0 -3.5 L-酪氨酸 160.0 -4.5
    NaNO3 100.0 3.6 L-丝氨酸 500.0 -4.9
    MgCl2 660.0 -3.8 L-天门冬氨酸 30.0 -4.8
    下载: 导出CSV

    表 2  测定D-PA的不同方法的比较

    方法 试剂与材料 检出限/(μmol·L-1) 评价
    电化学发光法[3] 碳纳米片 33.0 灵敏度较低
    电化学法[4] 碳糊电极 0.7 合成步骤较复杂
    分光光度法[5] [Ru(CN)6]4- 0.25 检出限较低,但合成步骤较繁琐,需要使用贵金属
    高效液相色谱法[6] C18柱 0.03 灵敏度高,可同时进行多组分检测,但需要使用有机溶剂
    圆二色性法[7] CdS量子点 0.49 步骤复杂,不适宜常规检测
    荧光法[9] 银离子,碳点 5.62 合成步骤较繁琐
    荧光法[10] CdTe量子点 3.3 合成步骤较繁琐
    荧光法[11] 碳点 0.6 合成步骤较繁琐
    荧光法(本研究) L-Trp-Hg2+ 0.13 简单、灵敏、选择性好,适用于日常测定
    下载: 导出CSV

    表 3  逻辑门真值表

    输入1
    (Hg2+)
    输入2
    (D-PA)
    输出荧光
    0 0 1(高)
    0 1 1(高)
    1 0 0(低)
    1 1 1(高)
    下载: 导出CSV

    表 4  药片中D-PA的测定结果

    样品 标称量/(g·片-1) D-PA测得值/(g·片-1) D-PA加入量/(g·片-1) D-PA测得值/(g·片-1) 回收率/% RSD/%
    1 0.025 0.146 96.0 3.2
    2 0.125 0.122 0.053 0.177 103.8 2.8
    3 0.109 0.228 97.2 4.0
    注:n=5.
    下载: 导出CSV
  • [1] SULIMAN F E O, AL-LAWATI Z H, AL-KINDY S M Z. A Spectrofluorimetric Sequential Injection Method for the Determination of Penicillamine Using Fluorescamine in the Presence of Beta-Cyclodextrins[J]. Journal of Fluorescence, 2008, 18(6): 1131-1138. doi: 10.1007/s10895-008-0363-9
    [2] 陈新谦, 金有豫, 汤光, 等. 新编药物学[M]. 13版. 北京: 人民卫生出版社, 1992.
    [3] LIN X, ZHU S, WANG Q H, et al. Chiral Recognition of Penicillamine Enantiomers Using Hemoglobin and Gold Nanoparticles Functionalized Graphite-Like Carbon Nitride Nanosheets via Electrochemiluminescence[J]. Colloids and Surfaces B: Biointerfaces, 2016, 148: 371-376. doi: 10.1016/j.colsurfb.2016.09.013
    [4] ZHAI Y B, ZHUANG H Y, PEI M S, et al. The Development of a Conjugated Polyelectrolytes Derivative Based Fluorescence Switch and Its Application in Penicillamine Detection[J]. Journal of Molecular Liquids, 2015, 202: 153-157. doi: 10.1016/j.molliq.2014.12.023
    [5] LI B L, LUO J H, LUO H Q, et al. A Novel Strategy for Selective Determination of D-Penicillamine Based on Molecularly Imprinted Polypyrrole Electrode via the Electrochemical Oxidation with Ferrocyanide[J]. Sensors and Actuators B: Chemical, 2013, 186: 96-102. doi: 10.1016/j.snb.2013.05.091
    [6] SARACINO M A, CANNISTRACI C, BUGAMELLI F, et al. A Novel HPLC-Electrochemical Detection Approach for the Determination of D-Penicillamine in Skin Specimens[J]. Talanta, 2013, 103: 355-360. doi: 10.1016/j.talanta.2012.10.076
    [7] NGAMDEE K, PUANGMALI T, TUNTULANI T, et al. Circular Dichroism Sensor Based on Cadmium Sulfide Quantum Dots for Chiral Identification and Detection of Penicillamine[J]. Analytica Chimica Acta, 2015, 898: 93-100. doi: 10.1016/j.aca.2015.09.038
    [8] 李茜, 宋汉敏, 刘英. 离子色谱法测定青霉胺片的含量及有关物质[J]. 药物分析杂志, 2020, 40(4): 698-706. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX202004017.htm
    [9] 李玲芳, 王琦. 荧光碳点的制备及银离子辅助的点亮型识别青霉胺[J]. 无机化学学报, 2020, 36(11): 2055-2062. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX202011007.htm
    [10] 周晓燕, 李在均, 王光丽, 等. 手性CdTe量子点制备及在药物青霉胺对映体检测中的应用[J]. 分析试验室, 2013, 32(9): 1-5. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201309001.htm
    [11] YUAN Y S, ZHAO X, LIU S P, et al. A Fluorescence Switch Sensor Used for D-Penicillamine Sensing and Logic Gate Based on the Fluorescence Recovery of Carbon Dots[J]. Sensors and Actuators B: Chemical, 2016, 236: 565-573. doi: 10.1016/j.snb.2016.06.007
    [12] NEUPANE L N, PARK J Y, PARK J H, et al. Turn-on Fluorescent Chemosensor Based on an Amino Acid for Pb(Ⅱ) and Hg(Ⅱ) Ions in Aqueous Solutions and Role of Tryptophan for Sensing[J]. Organic Letters, 2013, 15(2): 254-257. doi: 10.1021/ol3029516
    [13] WAN X J, LI S F, ZHUANG L L, et al. L-Tryptophan-Capped Carbon Quantum Dots for the Sensitive and Selective Fluorescence Detection of Mercury Ion in Aqueous Solution[J]. Journal of Nanoparticle Research, 2016, 18(7): 1-9.
    [14] NEELAM, SINGH V, SHANKAR B, et al. Molecular Logic Operations Based on Optical Detection of Sulfur Mustard Simulant Using Pyridine Appended Mg-Porphyrazine Complex[J]. Sensors and Actuators B: Chemical, 2016, 227: 85-91. doi: 10.1016/j.snb.2015.12.035
    [15] SINGH G, SINGH J, SINGH J, et al. Design of Selective 8-Methylquinolinol Based Ratiometric Fe2+ and Fe3+/H2PO4- Fluorescent Chemosensor Mimicking NOR and IMPLICATION Logic Gates[J]. Journal of Luminescence, 2015, 165: 123-129. doi: 10.1016/j.jlumin.2015.04.027
  • 加载中
图( 7) 表( 4)
计量
  • 文章访问数:  2837
  • HTML全文浏览数:  2837
  • PDF下载数:  460
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-04-05
  • 刊出日期:  2022-05-20

L-色氨酸-Hg2+-青霉胺体系的荧光光谱及分析应用

    通讯作者: 胡咏梅:主任医师; 
    通讯作者: 胡小莉,教授
    作者简介: 闫晶晶,硕士研究生,主要从事分子光谱研究
  • 1. 西南大学 化学化工学院,重庆 400715
  • 2. 成都市第二人民医院,成都 610017
基金项目:  国家自然科学基金项目(21705132);成都市卫生健康委员会资助项目(2021029)

摘要: 基于L-色氨酸(L-Trp)荧光猝灭与恢复,建立了一种高灵敏度、高选择性检测D-青霉胺(D-PA)的荧光分析方法. 实验发现在pH=4.8的缓冲溶液中,Hg2+与L-Trp中的羧基结合,猝灭L-Trp的荧光. 随着D-PA的加入,由于Hg2+与D-PA的巯基产生更强的螯合作用,导致Hg2+脱离L-Try,后者荧光恢复. 据此设计了IMPLICATION逻辑门,并用于D-PA的检测. 在优化条件下,荧光恢复程度与D-PA浓度在0.44~50.0 μmol/L范围内呈良好的线性关系,检出限为0.13 μmol/L. 该方法用于青霉胺药片含量的测定,结果满意.

English Abstract

  • 开放科学(资源服务)标志码(OSID):

  • 青霉胺(3,3-二甲基半胱氨酸,PA)是青霉素的代谢产物,也是一种含巯基氨基酸[1]. 同时青霉胺也是一种具有药理作用的手性化合物,用于治疗多种疾病,如威尔逊氏病、类风湿性关节炎、硬皮病及重金属中毒等[2]. 青霉胺作为手性化合物,存在D-青霉胺(D-PA)和L-青霉胺两种对映异构体,它们的药效及毒理作用差别很大,其中L-PA有一定毒副作用,只有D-PA有治疗疾病的作用. 世界卫生组织已经将D-PA列为基础医疗中的必备药品. 因此,建立简单、快速、高灵敏、高选择检测D-PA的方法具有重要意义. 目前报道的检测D-PA的主要方法有电化学发光[3]、电化学法[4]、分光光度法[5]、HPLC法[6]、圆二色性法[7]和离子色谱法[8]. 此外,荧光光谱法相比于其他方法更简单、高效,且灵敏度更高. 近年来,已有较多测定D-PA的荧光法报道[9-11],但是有的荧光探针合成步骤复杂繁琐,限制了方法的使用. 本研究利用一种简单易得的荧光探针来检测D-PA. 研究发现,L-色氨酸(L-Trp)在352 nm处有很强的荧光发射峰,随着Hg2+的加入,L-Trp荧光被猝灭. 接着加入D-PA,L-Trp的荧光得到恢复,据此建立了一种“开-关”模型来检测D-PA,其反应机理见图 1.

  • Hitachi F-2500型荧光分光光度计(日立科学仪器有限公司,日本);UV-2450型紫外-可见分光光度计(岛津公司,日本);pHSJ-4F酸度计(上海仪电科学仪器股份有限公司,上海).

    L-Trp、D-PA(阿拉丁试剂有限公司,上海);HgCl2(四川科伦医药贸易有限公司,成都);Britton-Robinson缓冲溶液:2.71 mL 85% 磷酸(重庆北碚化学试剂厂,重庆),2.36 mL冰醋酸(重庆川东化工有限公司,重庆)和2.47 g硼酸(重庆北碚化学试剂厂,重庆)溶于1.0 L蒸馏水中,用0.2 mol/L NaOH调节不同pH值. 实验过程中所用水均为超纯水.

  • 在10.0 mL的比色管中依次加入pH=4.8的BR缓冲溶液1.0 mL,0.5 mL 4.0 × 10-4 mol/L L-色氨酸,0.5 mL 1.0 × 10-2 mol/L Hg2+和一系列不同浓度的D-PA,用蒸馏水定容至刻度后摇匀,在室温下静置15 min. 在荧光分光光度计上以λex=275 nm激发,进行波长扫描,记录体系的荧光光谱,并在波长352 nm处测定样品和试剂空白的荧光强度,ΔF=F-F0. 狭缝宽度为10 nm.

  • 以最大激发波长275 nm对L-Trp溶液进行荧光光谱扫描,发现其最大荧光峰位于352 nm处(图 2中曲线1),而Hg2+和D-PA均无荧光. L-Trp与D-PA溶液混合,L-Trp的荧光强度几乎没有变化(图 2中曲线2). 然而,在一定浓度的L-Trp中加入适量Hg2+后,由于Hg2+与L-Trp结构中的羧基结合,使得L-Trp在352 nm的荧光猝灭[12](图 2中曲线4),接着向溶液中加入与Hg2+结合能力更强的D-PA,L-Trp被释放出来,溶液荧光逐渐得到恢复(图 2中曲线3).

  • 实验探究了不同pH值的BR缓冲溶液对反应体系的影响. 由图 3可知,L-Trp-Hg2+和L-Trp-Hg2+-D-PA两个反应体系的荧光强度在pH=2.0~3.1范围逐渐增强,pH=3.1~7.2之间荧光逐渐减弱,但荧光恢复值(ΔF)在pH=4.0~5.0时最大(图 3插图). 因此本实验选用pH=4.8的BR溶液为反应介质.

  • L-Trp作为一种常见天然氨基酸,已有文献报道Hg2+可以与羧基螯合从而猝灭L-Trp的荧光[13]. 如图 4所示,在Hg2+浓度为4.0×10-4 mol/L时,L-Trp荧光猝灭程度最大,且随着Hg2+继续加入,荧光强度保持不变. 故本实验选择5.0×10-4 mol/L为Hg2+后续实验浓度.

  • 研究了离子强度对三元反应体系的影响(图 5),当NaCl浓度低于4.0×10-4 mol/L时,反应体系荧光强度较稳定;当NaCl浓度高于4.0×10-4 mol/L时,荧光强度有所增加,因此,在实际样品检测过程中要注意控制离子强度,避免高浓度盐类的引入. 此外,实验发现L-Trp的荧光在15 min恢复到最大值并且在1 h内保持稳定,因此选择15 min为反应时间.

  • 为了考察该方法的选择性,在优化的实验条件下,探究了20种常见物质对测定D-PA的影响. 当共存物质引起的荧光强度改变在相对误差±5%之内,通常认为不会对检测造成影响. 由表 1可知,常见的金属离子、氨基酸、糖类对D-PA的检测几乎没有影响,表明本法具有较好的选择性,可以应用于实际样品的检测.

  • 按照前述实验方法,测定不同D-PA浓度下反应体系的荧光强度. 如图 6所示,随着D-PA的加入,L-Trp的荧光逐渐恢复,荧光恢复程度(ΔF)与D-PA浓度在0.44~50.0 μmol/L范围内呈现良好的线性关系(图 6插图),线性回归方程为ΔF=226.6 C+51.8,相关系数为0.999 3,检出限(3σ/K)达0.13 μmol/L. 表 2列出了本法与其他方法测定D-PA的比较,由此可以看出,本法灵敏度高,操作简单,更具有实用价值.

  • 分子传感器与目标分析物协同作用,对反应条件进行信息处理,将一个或多个反应条件作为输入信号,荧光信号的改变作为输出信号[14]. 基于荧光响应可以通过Hg2+和D-PA的加入来回切换,体系荧光强度进入“on-off-on”模式,为此构建了IMPLICATION逻辑门[15]. 以L-Trp作为一种逻辑门装置,设定Hg2+(输入1)和D-PA(输入2)为输入信号,352 nm处荧光强度为输出信号,0和1分别代表荧光猝灭和未猝灭. 无信号输入(0,0)或只有D-PA输入(0,1),352 nm处荧光吸收很强,输出为1;单独Hg2+输入(0,1)时,荧光猝灭,输出为0. 当两者同时输入(1,1)时,L-Trp荧光恢复,输出为1. 表 3为逻辑门对应的真值表,图 7为荧光输出IMPLICATION逻辑图.

  • 为了评价本方法的适用性和有效性,将本方法用于青霉胺药片中D-PA含量检测. 随机选10片药片(上海信谊药厂有限公司),研细. 称取相当于0.25片质量的样品,溶解、过滤、除去不溶物,最后定容至500.0 mL容量瓶中,备用. 吸取0.5 mL待测液于10.0 mL比色管中进行检测, 结果见表 4. 通过标准加入法测得回收率和相对标准偏差分别为96.0%~103.8% 和2.8%~4.0%,表明本方法具有较高的准确度和较好的重复性,可以用于实际样品的测定.

  • 利用Hg2+与D-PA之间的强螯合作用,使得Hg2+脱离L-Trp,L-Trp荧光得到恢复,从而设计了分子逻辑门,并建立了D-PA的荧光检测新方法. 本方法相较于其他方法,简单易行、选择性好、灵敏度高,无需精密的仪器和复杂的合成步骤,适用于青霉胺药片含量的测定.

参考文献 (15)

目录

/

返回文章
返回