-
开放科学(资源服务)标志码(OSID):
-
水库消落带又称涨落区或涨落带,是河流或水库季节性的水位涨落而使周边的土地周期性地水淹-落干-水淹的特殊区域[1]. 消落带作为水陆衔接带,是重要的缓冲带和过滤带,但对环境变化特别敏感,容易受到干扰. 植被作为消落带湿地生态系统结构和功能的核心,可为库岸生态系统提供多种生态功能[2-3]. 作为世界上大型水利枢纽之一,三峡水库采取“冬蓄夏排”的水位调度方式,在水库两岸145~175 m高程形成了反季节、涨落幅度达30 m的大面积消落带[4]. 三峡库区消落带作为水、陆生态系统之间物质运输、能量交换和信息传递的活跃地带,具有典型的生态脆弱性特征[5]. 由于三峡水库周期性、高强度以及反季节的长时间蓄水使库区消落带生境恶化,引发了一系列的生态环境问题,如群落结构单一化、生物多样性降低、土地退化、景观恶化以及土壤侵蚀严重等[6-7],对库区生态安全造成极大威胁.
消落带极易受到水淹的影响[8-9]. 三峡水库的水文节律影响着消落带植物群落的分布和演替,导致消落带新形成的湿地植物群落物种数量降低[10]. 与建坝前相比,三峡库区消落带植被生物量和物种多样性持续下降,乔木和灌木等木本植物几乎消失,一年生和多年生草本植物成为消落区最常见的植物种类[11]. Yang等[12]分别在2001年和2009年对三峡大坝建立前后的消落带植被进行调查,发现维管束植物下降了43%,优势植物群落类型明显改变,一年生植物逐渐取得优势. 已有研究表明,水淹深度、持续时间和频率都会影响库区消落带的植物群落,水库消落带低高程植物群落受到水淹胁迫的影响,而高高程植物群落则受到水淹和干旱胁迫的共同影响[13]. 与此同时,土壤、地形等环境因子也可能主导消落带的植被分布格局,但因二者作用机理有所不同,还可能会产生耦合效应,因此消落带植被与环境之间的关系及其复杂[14-15]. 目前关于三峡库区消落带植物群落特征与环境因子之间相关性已有研究,对于揭示库区消落带植物群落初期演替具有一定的参考价值. 但随着水库运行时间的增长,消落带的植物群落仍然处于动态变化之中,与环境因子之间的关系有待于进一步研究.
三峡库区周期性水位涨落,伴随着水淹时间的延长,库区消落带植被的物种组成、物种多样性和空间分布还处在不断变化之中. 本文选取具有典型代表性特征的三峡库区忠县消落带为研究对象,在三峡水库高水位运行10年后对当地消落带不同高程区域的植物群落及其环境因子进行重点研究. 通过比较不同高程的物种丰富度和多样性的差异,应用双向聚类法划分不同的群落类型,并分析物种多样性与环境因子之间的关系,从而为三峡库区消落带植被保护及修复提供一定的科学依据.
Characteristics of Plant Communities and Their Relationships with Environmental Factors in the Riparian Zone of Zhong County of the Three Gorges Reservoir Area
-
摘要: 消落带植物群落特征及物种多样性与环境之间的关系十分密切,对于有效维持健康的库岸生态系统至关重要. 本研究选取具有典型代表性特征的三峡库区忠县消落带为研究对象,对消落带内的植物群落进行调查,通过双向聚类分析和冗余分析(RDA)探究三峡库区重庆忠县段消落带不同高程的植物群落特征及其环境响应机制. 结果表明:1) 忠县消落带共有植物96种,隶属于34科80属,禾本科和菊科为优势科,其中狗牙根在各高程区域的重要值始终最高. 研究区域植物种类共划分为4种生活型,一年生草本植物的优势度随高程增加而逐渐上升,多年生草本植物主要分布在高高程区域,藤本和乔木在中高高程零星分布. 2) 消落带的Patrick丰富度指数、Shannon-Wiener指数、Simpson多样性指数和Pielou均匀度指数均随着高程的增加而逐渐升高. 3) 双向聚类分析结果显示,忠县消落带主要包括5种植物群落,其中狗牙根群落在各高程区域均有分布,草木犀-狗牙根群落、苍耳-狗牙根-喜旱莲子草群落、牛鞭草-苍耳-狗牙根群落和落羽杉-狼杷草-苍耳群落主要分布在高高程区域(165~175 m). 4)RDA分析结果表明,高程是影响消落带物种多样性最主要的环境因素;此外,土壤pH值、铵态氮含量及坡向也会产生一定的影响. 该研究结果可为三峡库区消落带的植被修复与重建提供参考依据.Abstract: The relationship between plant community characteristics, diversity of species and environment in the riparian zone is very important for maintaining a healthy reservoir-bank ecosystem. In this study, we investigated the plant community in the riparian zone of the Three Gorges Reservoir area in Zhong County, and explored the plant community characteristics and environmental response mechanism at different elevations in the riparian zone through bidirectional cluster analysis and redundancy analysis (RDA). The results showed that: 1) There were 96 species of plants in the riparian zone of the Three Gorges Reservoir area in Zhong County, belonging to 34 families and 80 genera. Gramineae and Compositae were the dominant families. The importance value of Cynodon dactylon was always the highest in all altitude regions. The plants in the study area could be divided into 4 life forms. The dominance of annual herbs gradually increased along with augmentation of the elevation. The perennial herbs were mainly distributed in high elevation areas, and lianas and trees were scattered in middle and high elevations. 2) The Patrick richness index, Shannon-Wiener index, Simpson diversity index and Pielou evenness index of the plant community in the riparian zone all increased gradually with the increase of elevation. 3) Two-way cluster analysis showed that there were mainly 5 kinds of plant communities in the riparian zone in Zhong County. Among them, the C. dactylon community was distributed across all elevations. However, the Melilotus of ficinalis-C. dactylon community, Xanthium stumarium-C. dactylon-Alternanthera philoxeroides community, Hemarthria sibirica-X. stumarium-C. dactylon community and Taxodium distichum-Bidens tripartita-X. strumarium community were mainly distributed in the high elevation area (165~175 m). 4) RDA results showed that elevation was the most important environmental factor affecting the diversity of species in the riparian zone, while soil pH, ammonium nitrogen content and slope aspect also had certain effects. The research results could provide a reference for the vegetation restoration and reconstruction of the riparian zone in the TGRA.
-
Key words:
- Three Gorges Reservoir area /
- riparian zone /
- species diversity /
- plant community types /
- environmental factors .
-
表 1 三峡库区忠县消落带不同高程的优势物种及其重要值
物种名称 科 属 物种重要值(IV) 145~155 m 155~165 m 165~175 m 狗牙根(Cynodon dactylon) 禾本科(Poaceae) 狗牙根属(Cynodon) 23.48 15.50 9.42 苍耳(Xanthium strumarium) 菊科(Asteraceae) 苍耳属(Xanthium) 4.28 4.21 6.74 苦蘵(Physalis angulata) 苦蘵(Solanaceae) 灯笼果属(Physalis) 4.84 2.50 - 狼杷草(Bidens tripartita) 菊科(Asteraceae) 鬼针草属(Bidens) 1.75 1.80 2.46 牛鞭草(Hemarthria sibirica) 禾本科(Poaceae) 牛鞭草属(Hemarthria) - 0.49 5.42 酸模叶蓼(Polygonum lapathifolium) 蓼科(Polygonaceae) 萹蓄属(Polygonum) 2.08 1.18 0.91 喜旱莲子草(Alternanthera philoxeroides) 苋科(Amaranthaceae) 莲子草属(Alternanthera) - 1.18 2.77 香附子(Cyperus rotundus) 莎草科(Cyperaceae) 莎草属(Cyperus) 0.99 2.44 0.52 野黍(Eriochloa villosa) 禾本科(Poaceae) 野黍属(Eriochloa) - 0.50 2.62 落羽杉(Taxodium distichum) 杉科(Taxodiaceae) 落羽杉属(Taxodium) - - 2.44 西来稗(Echinochloa crusgalli var. zelayensis) 禾本科(Poaceae) 稗属(Echinochloa) 1.99 0.35 - 马唐(Digitaria sanguinalis) 禾本科(Poaceae) 马唐属(Digitaria) - 0.95 0.47 稗(Echinochloa crus-galli) 禾本科(Poaceae) 稗属(Echinochloa) 0.99 0.28 - 旋鳞莎草(Cyperus michelianus) 莎草科(Cyperaceae) 莎草属(Cyperus) 1.16 - - 草木樨(Melilotus officinalis) 豆科(Fabaceae) 草木樨属(Melilotus) - 1.16 - 狗尾草(Setaria viridis) 禾本科(Poaceae) 狗尾草属(Setaria) - 0.24 0.86 小蓬草(Erigeron canadensis) 菊科(Compositae) 白酒草属(Conyza) - - 1.10 藿香蓟(Ageratum conyzoides) 菊科(Compositae) 藿香蓟属(Ageratum) - 1.01 - 表 2 环境因子对忠县消落带植物群落多样性的解释能力
因子 解释量/% 贡献率/% F值 p值 高程(Elv) 28.8 70.4 52.5 0.001 土壤pH值(pH) 5.6 13.8 11.0 0.001 氨态氮(NH4+-N) 2.6 6.5 5.4 0.017 坡向(Aspect) 2.2 5.3 4.5 0.025 年平均温度(T) 0.6 1.6 1.3 0.222 土壤含水量(SWC) 0.7 1.6 1.4 0.247 土壤有机质(SOM) 0.2 0.4 0.4 0.586 土壤容重(BD) 0.1 0.3 0.2 0.675 硝态氮(NO3--N) <0.1 <0.1 <0.1 0.886 速效磷(AP) <0.1 <0.1 <0.1 0.937 -
[1] 冯晶红, 刘瑛, 肖衡林, 等. 三峡库区消落带典型植物光合固碳能力及影响因素[J]. 水土保持研究, 2020, 27(1): 305-311. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202001044.htm [2] 刘以珍. 赣江河岸带植被特征[D]. 南昌: 南昌大学, 2010. [3] CLERICI N, PARACCHINI M L, MAES J. Land-Cover Change Dynamics and Insights into Ecosystem Services in European Stream Riparian Zones[J]. Ecohydrology & Hydrobiology, 2014, 14(2): 107-120. [4] 孙荣, 袁兴中, 刘红, 等. 三峡水库消落带植物群落组成及物种多样性[J]. 生态学杂志, 2011, 30(2): 208-214. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201102003.htm [5] CHEN F Q, XIE Z Q. Reproductive Allocation, Seed Dispersal and Germination of Myricaria laxiflora, an Endangered Species in the Three Gorges Reservoir Area[J]. Plant Ecology, 2007, 191(1): 67-75. doi: 10.1007/s11258-006-9214-4 [6] 白宝伟, 王海洋, 李先源, 等. 三峡库区淹没区与自然消落区现存植被的比较[J]. 西南农业大学学报(自然科学版), 2005, 27(5): 684-687, 691. doi: 10.3969/j.issn.1673-9868.2005.05.031 [7] YAN T M, YANG L Z, CAMPBELL C D. Microbial Biomass and Metabolic Quotient of Soils under Different Land Use in the Three Gorges Reservoir Area[J]. Geoderma, 2003, 115(1-2): 129-138. doi: 10.1016/S0016-7061(03)00082-X [8] 刘维暐, 王杰, 王勇, 等. 三峡水库消落区不同海拔高度的植物群落多样性差异[J]. 生态学报, 2012, 32(17): 5454-5466. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201217019.htm [9] LATSIOU A, KOUVARDA T, STEFANIDIS K, et al. Pressures and Status of the Riparian Vegetation in Greek Rivers: Overview and Preliminary Assessment[J]. Hydrology, 2021, 8(1): 55. doi: 10.3390/hydrology8010055 [10] RUSSELL K N, BEAUCHAMP V B. Plant Species Diversity in Restored and Created Delmarva Bay Wetlands[J]. Wetlands, 2017, 37(6): 1119-1133. doi: 10.1007/s13157-017-0945-x [11] LU Z J, LI L F, JIANG M X, et al. Can the Soil Seed Bank Contribute to Revegetation of the Drawdown Zone in the Three Gorges Reservoir Region?[J]. Plant Ecology, 2010, 209(1): 153-165. doi: 10.1007/s11258-010-9732-y [12] YANG F, LIU W W, WANG J, et al. Riparian Vegetation's Responses to the New Hydrological Regimes from the Three Gorges Project: Clues to Revegetation in Reservoir Water-Level-Fluctuation Zone[J]. Acta Ecologica Sinica, 2012, 32(2): 89-98. doi: 10.1016/j.chnaes.2012.02.004 [13] ZHENG J, ARIF M, ZHANG S L, et al. The Convergence of Species Composition along the Drawdown Zone of the Three Gorges Dam Reservoir, China: Implications for Restoration[J]. Environmental Science and Pollution Research International, 2021, 28(31): 42609-42621. doi: 10.1007/s11356-021-13774-0 [14] MERRITT D, SCOTT M, POFF N, et al. Theory, Methods and Tools for Determining Environmental Flows for Riparian Vegetation: Riparian Vegetation\u2010flow Response Guilds[J]. Freshwater Biology, 2010, 55: 206-225. doi: 10.1111/j.1365-2427.2009.02206.x [15] 郭二辉, 孙然好, 陈利顶. 河岸植被缓冲带主要生态服务功能研究的现状与展望[J]. 生态学杂志, 2011, 30(8): 1830-1837. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201108038.htm [16] 李丽娟, 谢婷婷, 张松林, 等. 三峡库区消落带4种适生植物根际与非根际土壤养分与酶活性特征研究[J]. 生态学报, 2020, 40(21): 7611-7620. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202021006.htm [17] 黄世友, 马立辉, 方文, 等. 三峡库区消落带植被重建与生态修复技术研究[J]. 西南林业大学学报, 2013, 33(3): 74-78, 111. doi: 10.3969/j.issn.2095-1914.2013.03.013 [18] 刘明辉, 谢婷婷, 李瑞, 等. 三峡库区消落带池杉-土壤碳氮磷生态化学计量特征[J]. 生态学报, 2020, 40(9): 3072-3084. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202009024.htm [19] 张志永, 程郁春, 程丽, 等. 三峡库区万州段消落带植被及土壤理化特征分析[J]. 水生态学杂志, 2016, 37(2): 24-33. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SCAN201602004.htm [20] 由永飞, 杨春华, 雷波, 等. 水位调节对三峡水库消落带植被群落特征的影响[J]. 应用与环境生物学报, 2017, 23(6): 1103-1109. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201706022.htm [21] 陈功, 李晓玲, 黄杰, 等. 三峡水库秭归段消落带植物群落特征及其与环境因子的关系[J]. 生态学报, 2022, 42(2): 688-699. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202202025.htm [22] 郭燕, 杨邵, 沈雅飞, 等. 三峡水库消落带现存植物自然分布特征与群落物种多样性研究[J]. 生态学报, 2019, 39(12): 4255-4265. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201912005.htm [23] 童笑笑, 陈春娣, 吴胜军, 等. 三峡库区澎溪河消落带植物群落分布格局及生境影响[J]. 生态学报, 2018, 38(2): 571-580. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201802022.htm [24] LI Q. Influence of Water Level on Cynodon dactylon Population in Water-Level-Fluctuating Zone of the Three Gorges Reservoir[J]. Applied Mechanics and Materials, 2013, 295-298: 1857-1861. doi: 10.4028/www.scientific.net/AMM.295-298.1857 [25] 张爱英, 熊高明, 樊大勇, 等. 三峡水库运行对淹没区及消落带植物多样性的影响[J]. 生态学杂志, 2016, 35(9): 2505-2518. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201609031.htm [26] 王业春, 雷波, 张晟. 三峡库区消落带不同水位高程植被和土壤特征差异[J]. 湖泊科学, 2012, 24(2): 206-212. doi: 10.3969/j.issn.1003-5427.2012.02.006 [27] ZHANG A Y, XIE Z Q. C4 Herbs Dominate the Reservoir Flood Area of the Three Gorges Reservoir[J]. Science of the Total Environment, 2021, 755: 142479. doi: 10.1016/j.scitotenv.2020.142479 [28] LOMOLINO M V. Elevation Gradients of Species-Density: Historical and Prospective Views[J]. Global Ecology and Biogeography, 2001, 10(1): 3-13. doi: 10.1046/j.1466-822x.2001.00229.x [29] MA Y R, CHEN F Q, CHEN S H, et al. Effects of Reverse Seasonal Submersion on the Germination and Persistence of Soil Seed Banks in Hydro-Fluctuation Belts[J]. Ecohydrology, 2018, 11(7): e2008. doi: 10.1002/eco.2008 [30] 柯智溢, 王琴, 沈秋月, 等. 三峡水库忠县至秭归县段消落带植被群落特征研究[J]. 长江流域资源与环境, 2020, 29(9): 1975-1985. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202009008.htm [31] YAO W M, LI C D, ZHAN H B, et al. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting-Drying of Yangtze River Water[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2215-2231. doi: 10.1007/s00603-019-02037-7 [32] 付娟, 李晓玲, 戴泽龙, 等. 三峡库区香溪河消落带植物群落构成及物种多样性[J]. 武汉大学学报(理学版), 2015, 61(3): 285-290. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201503015.htm [33] ESCOBEDO V M, RIOS R S, ALCAYAGA-OLIVARES Y, et al. Disturbance Reinforces Community Assembly Processes Differentially across Spatial Scales[J]. Annals of Botany, 2020, 127(2): 175-189. [34] ARIF M, ZHENG J, WOKADALA C, et al. Assessing Riparian Zone Changes under the Influence of Stress Factors in Higher-Order Streams and Tributaries: Implications for the Management of Massive Dams and Reservoirs[J]. Science of the Total Environment, 2021, 776: 146011. doi: 10.1016/j.scitotenv.2021.146011 [35] 张爱英, 熊高明, 樊大勇, 等. 三峡水库蓄水对长江干流河岸植物组成的影响[J]. 长江流域资源与环境, 2018, 27(1): 145-156. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201801017.htm [36] 洪明, 郭泉水, 聂必红, 等. 三峡库区消落带狗牙根种群对水陆生境变化的响应[J]. 应用生态学报, 2011, 22(11): 2829-2835. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201111008.htm [37] 李强, 丁武泉, 王书敏, 等. 三峡库区多年高水位运行对消落带狗牙根生长恢复的影响[J]. 生态学报, 2020, 40(3): 985-992. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202003023.htm [38] 王强, 袁兴中, 刘红, 等. 水淹对三峡水库消落带苍耳种子萌发的影响[J]. 湿地科学, 2011, 9(4): 328-333. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201104007.htm [39] 武帅楷. 三峡水库消落带植物群落生态学研究[D]. 重庆: 重庆大学, 2019. [40] 马文超, 刘媛, 周翠, 等. 水位变化对三峡库区消落带落羽杉营养特征的影响[J]. 生态学报, 2017, 37(4): 1128-1136. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201704008.htm [41] 吕明权, 吴胜军, 陈春娣, 等. 三峡消落带生态系统研究文献计量分析[J]. 生态学报, 2015, 35(11): 3504-3518. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201511002.htm [42] 彭月, 王建力, 魏虹. 三峡库区重庆段不同土壤类型土壤侵蚀景观异质性分析[J]. 水土保持研究, 2009, 16(5): 7-12. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200905003.htm [43] 樊晶晶, 慈恩, 连茂山, 等. 三峡水库不同高程消落区水分变化对土壤有机碳的影响[J]. 西南大学学报(自然科学版), 2019, 41(5): 120-127. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.05.018 [44] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地植物群落分布与土壤特性关系的DCA、CCA及DCCA分析[J]. 生态学杂志, 2015, 34(4): 947-954. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201504008.htm [45] 刘亚琦, 刘加珍, 陈永金, 等. 孔雀河下游断流河道的环境特征及物种间关系[J]. 生态学报, 2017, 37(8): 2706-2718. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201708021.htm [46] PIELECH R, ANIOŁ-KWIATKOWSKA J, SZCZESNIAK E. Landscape-Scale Factors Driving Plant Species Composition in Mountain Streamside and Spring Riparian Forests[J]. Forest Ecology and Management, 2015, 347: 217-227. doi: 10.1016/j.foreco.2015.03.038 [47] GRIME J P, THOMPSON K, HUNT R, et al. Integrated Screening Validates Primary Axes of Specialisation in Plants[J]. Oikos, 1997, 79(2): 259. doi: 10.2307/3546011 [48] 罗琰, 苏德荣, 吕世海, 等. 辉河湿地河岸带植物物种多样性与土壤因子的关系[J]. 湿地科学, 2016, 14(3): 396-402. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201603014.htm [49] 付文龙. 乌江与汉江上游流域河岸带植物群落构建比较研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2021. [50] 张文玲, 陈凌. 三峡库区消落带观赏草植物适生研究及对土壤氮磷的富集特征分析[J]. 西南师范大学学报(自然科学版), 2021, 46(10): 45-50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202110008.htm [51] ZHANG Z Y, WAN C Y, ZHENG Z W, et al. Plant Community Characteristics and Their Responses to Environmental Factors in the Water Level Fluctuation Zone of the Three Gorges Reservoir in China[J]. Environmental Science and Pollution Research International, 2013, 20(10): 7080-7091. doi: 10.1007/s11356-013-1702-1 [52] 方精云, 沈泽昊, 崔海亭. 试论山地的生态特征及山地生态学的研究内容[J]. 生物多样性, 2004, 12(1): 10-19. doi: 10.3321/j.issn:1005-0094.2004.01.003