-
开放科学(资源服务)标志码(OSID):
-
水稻是世界上最重要的粮食作物之一,其产量与世界粮食安全问题息息相关. 水稻产量由单位面积有效穗数、每穗粒数以及千粒质量决定,其中,由籽粒长、宽、厚决定的籽粒形态可以通过影响千粒质量进而影响水稻产量.
近年来,与水稻籽粒形态发育相关的基因逐渐被克隆,遗传调控网络也逐渐完善. 在已克隆出的粒型发育基因中,GW2,GW5/GSE5,GS5,GW8和TGW2等基因主要控制粒宽,其中GW2编码一个RING-like E3泛素连接酶,通过将底物锚定到蛋白酶体进行降解,从而负调节细胞分裂,突变后增加了颖壳细胞的数目,导致粒宽和粒质量增加[1]. GW5/GSE5编码一个钙调素结合蛋白,是BR信号传导的正调控因子,通过影响颖壳的细胞数目来控制粒型;其与OsGSK2互作,抑制GSK2的自磷酸化及GSK2对OsBZR1和DLT的磷酸化,从而影响细胞核中未磷酸化的OsBZR1和DLT蛋白的积累[2-3]. GW8编码一个包含SBP结构域的转录因子OsSPL16,该基因的高表达能促进细胞分裂和灌浆从而促进水稻粒宽增加和增产;进一步发现GW8/OsSPL16直接与GW7启动子结合并抑制它的表达,从而增加横向细胞分裂正向调控水稻粒宽[4-6]. GS3,TGW6,OsLG3,GLW7,GL4,qGL3/GL3.1,qLGY3/OsLG3b,TGW3和GL6等基因主要控制粒长,其中GS3编码非典型的G γ亚基,与DEP1或GGC2竞争性结合Gβ亚基,负向调控籽粒长度[7-8]. GLW7编码SBP结构域的转录因子OsSPL13,正向调控颖壳细胞的扩展,从而提高了水稻的粒长和产量[9]. OsLG3编码AP2/ERF类乙烯反应元件结合蛋白,通过促进细胞增殖正向调控粒长,且在不影响稻米品质的情况下提高水稻产量[10]. GL2/GS2,GL7/GW7,GW6a和GS9等基因同时控制粒长和粒宽,其中GL2/GS2编码的转录因子OsGRF4属于GRF家族蛋白成员,主要通过促进细胞扩张和少量细胞增殖正调控籽粒大小[11-12]. GL7/GW7编码一个TONNEAU1募集基序蛋白,表达量上调能增加颖壳细胞的纵向分裂并减少横向分裂[8]. GW6a编码一个具有组蛋白乙酰转移酶活性的类GNAT蛋白OsglHAT1,通过增加细胞数和增大颖壳,同时加速籽粒灌浆速率,正向调控籽粒大小和粒质量[13]. 综上,参与水稻籽粒大小调控的基因较多,涉及了多种信号转导以及生化代谢途径.
本研究报道了一个与水稻籽粒发育相关的突变体,主要表现为细胞增殖与细胞扩展异常导致的籽粒变小. 遗传分析表明该突变性状受1个单隐性基因控制,我们将其命名为small grain 2(smg2). 通过BSA法,我们将SMG2定位在水稻第1染色体上IN/DEL标记A-0.85和A-1.05之间,物理距离大约为200 kb. 测序发现定位区间内编号LOC_Os01g02890基因的第1个外显子上第153位碱基胞嘧啶(C)缺失,从而导致移码突变和蛋白翻译提前终止,最终将候选基因定为LOC_Os01g02890. 本研究为SMG2基因后续调控籽粒形态发育的分子机制解析奠定了基础.
Identification of Phenotype and Candidate Gene of Small Grain Mutant smg2 in Rice (Oryza sativa L.)
-
摘要: 水稻产量是由单位面积有效穗数、每穗粒数以及千粒质量决定的,籽粒形态可以决定千粒质量进而影响水稻产量. 报道了一个与水稻籽粒形态发育相关的突变体,来源于籼稻保持系西大1B的甲基磺酸乙酯(ethyl methane sulfonate,EMS)诱变群体. 该突变体表现为由细胞扩展和细胞增殖异常导致的籽粒变小,暂命名为水稻小粒突变体(small grain 2,smg2). 遗传分析表明:smg2突变体性状受1对隐性单基因控制,利用群体分离分析法(bulked segregation analysis,BSA)将SMG2基因定位在第1染色体IN/DEL标记A-0.85和A-1.05之间,物理距离200 kb,在定位区间内含注释基因28个. PCR测序发现其中编号为LOC_Os01g02890的基因中第1个外显子的第153位碱基发生了单碱基缺失,造成编码框移码突变,从而导致蛋白翻译提前终止. 因此,将LOC_Os01g02890暂定为SMG2的候选基因.Abstract: Rice yield is determined by effective panicles per unit area, number of grains per panicle and 1 000-grain weight. Grain morphology is determined by grain length, width and thickness. It has an impact on rice yield by affecting 1 000-grain weight. In this paper, a mutant related to grain development of rice was reported, which was derived from the EMS (ethyl methane sulfonate) induced mutant population of indica maintainer line XD1B. The mutant is characterized by grain size caused by abnormal cell expansion and proliferation, and is tentatively named as the small grain 2 (smg2) mutant. Genetic analysis showed that the smg2 trait was controlled by a pair of recessive single gene. By population segregation analysis (bulked segregation analysis, BSA), the SMG2 gene was located between A-0.85 and A-1.05 on chromosome 1, with a physical distance of 200 kb and 28 annotated genes. Subsequent literature review and PCR products sequencing showed that there was a single base deletion at the 153th base of the first exon of the LOC_Os01g02890 gene. This frameshift mutation leads to early termination of protein translation, so the SMG2 candidate gene is tentatively designated as LOC_Os01g02890.
-
Key words:
- rice (Oryza sativa L.) /
- grain /
- development of glumes /
- gene mapping .
-
表 1 定位引物序列
引物名称 正向序列(5'-3') 反向序列(5'-3') A-0.65 GGAGAGGAAATTGGTAACGCCG CAATCAGAGCCCACGGATCAG A-0.84 CCAGAACATGCTTTGCAGACTGC CTTACCTGCAACAAGAGTGACCCG A-0.85 CTCTGGCATACCAGCTATGCACT TACATCGAAAGCCTGGAGCCT A-1.05 CATGGAGGTCAATGGTCATCAC GAACACAGATGACCAGGTAACAC A-1.09 CTGATCTGATACGGCCAGCAGAAT GCATCTTCAGCCGCCGTAATC A-1.67 TTGAGGATGGGAGGCGTGAGTAG GATCATATCGCTGCCTCTGCAC A-2.35 TGTTATGAGTCGGAGACTCAAGCC CGGTGAACTCTCAGCACACTTGAT A-2.40 TGACGACTCCGTCGATTAAATCAC GAGTAACGACCGACTTCAACCAAT RM10445R GGGACTACTCGAGCAAGCTAATGC GTCCAATCTAATCGACCTCCAAGAGC 表 2 扩增引物序列
引物名称 正向序列(5'-3') 反向序列(5'-3') SMG2-1 TCGCTCTACAACTCACCACCAAAG GGAGACTTTCCGATCAATCGTGG SMG2-2 TGAACGGCATAGAAGTCCCTGTC CAACCTCACATGCCAGCAGCTC 表 3 定位区间内的注释基因
序号 基因名称 基因注释 1 LOC_Os01g02610 蛋白激酶结构域包含蛋白,表达 2 LOC_Os01g02629 逆转录转座子蛋白,推测,未分类,表达 3 LOC_Os01g02650 逆转录转座子蛋白,推测,未分类,表达 4 LOC_Os01g02660 逆转录转座子蛋白,推测,未分类,表达 5 LOC_Os01g02670 逆转录转座子蛋白,推测,ty1-复制亚类,表达 6 LOC_Os01g02680 蛋白激酶结构域包含蛋白,表达 7 LOC_Os01g02690 耐药相关受体样激酶,推测,表达 8 LOC_Os01g02700 蛋白激酶结构域包含蛋白,表达 9 LOC_Os01g02710 LRk型蛋白,推测,表达 10 LOC_Os01g02720 类eEF1A蛋白 11 LOC_Os01g02730 TAK14,推测,表达 12 LOC_Os01g02740 逆转录转座子蛋白,推测,未分类,表达 13 LOC_Os01g02750 蛋白激酶结构域包含蛋白,表达 14 LOC_Os01g02760 受体样激酶,推测,表达 15 LOC_Os01g027700 耐药相关受体样激酶,推测,表达 16 LOC_Os01g02780 TAK33,推测,表达 17 LOC_Os01g02790 蛋白激酶结构域包含蛋白,表达 18 LOC_Os01g02800 受体样激酶ARK1AS,推测,表达 19 LOC_Os01g02810 耐药相关受体样激酶,推测,表达 20 LOC_Os01g02830 受体样激酶ARK1AS,推测,表达 21 LOC_Os01g02840 耐药相关受体样激酶,推测,表达 22 LOC_Os01g02850 表达蛋白 23 LOC_Os01g02860 表达蛋白 24 LOC_Os01g02870 生长素诱导蛋白5NG4,推测,表达 25 LOC_Os01g02880 果糖二磷酸醛缩酶同工酶,推测,表达 26 LOC_Os01g02884 依赖ATP的RNA解旋酶DHX36,推测,表达 27 LOC_Os01g02890 磷脂酰丝氨酸合酶 28 LOC_Os01g02900 糖基转移酶,推测,表达 -
[1] SONG X J, HUANG W, SHI M, et al. A QTL for Rice Grain Width and Weight Encodes a Previously Unknown RING-Type E3 Ubiquitin Ligase[J]. Nature Genetics, 2007, 39(5): 623-630. doi: 10.1038/ng2014 [2] LIU J, CHEN J, ZHENG X, et al. GW5 Acts in the Brassinosteroid Signalling Pathway to Regulate Grain Width and Weight in Rice[J]. Nature Plants, 2017, 3: 17043. doi: 10.1038/nplants.2017.43 [3] DUAN P, XU J, ZENG D, et al. Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice[J]. Molecular Plant, 2017, 10(5): 685-694. doi: 10.1016/j.molp.2017.03.009 [4] WANG S, WU K, YUAN Q, et al. Control of Grain Size, Shape and Quality by OsSPL16 in Rice[J]. Nature Genetics, 2012, 44(8): 950-954. doi: 10.1038/ng.2327 [5] WANG Y, XIONG G, HU J, et al. Copy Number Variation at the GL7 Locus Contributes to Grain Size Diversity in Rice[J]. Nature Genetics, 2015, 47(8): 944-948. doi: 10.1038/ng.3346 [6] WANG S, LI S, LIU Q, et al. The OsSPL16-GW7 Regulatory Module Determines Grain Shape and Simultaneously Improves Rice Yield and Grain Quality[J]. Nature Genetics, 2015, 47(8): 949-954. doi: 10.1038/ng.3352 [7] MAO H, SUN S, YAO J, et al. Linking Differential Domain Functions of the GS3 Protein to Natural Variation of Grain Size in Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584. doi: 10.1073/pnas.1014419107 [8] SUN S, WANG L, MAO H, et al. A G-Protein Pathway Determines Grain Size in Rice[J]. Nature Communications, 2018, 9(1): 851. doi: 10.1038/s41467-018-03141-y [9] SI L, CHEN J, HUANG X, et al. OsSPL13 Controls Grain Size in Cultivated Rice[J]. Nat Genet, 2016, 48(4): 447-456. doi: 10.1038/ng.3518 [10] YU J, XIONG H, ZHU X, et al. OsLG3 Contributing to Rice Grain Length and Yield was Mined by Ho-LAMap[J]. BMC Biol, 2017, 15(1): 28. doi: 10.1186/s12915-017-0365-7 [11] HU J, WANG Y, FANG Y, et al. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. doi: 10.1016/j.molp.2015.07.002 [12] CHE R, TONG H, SHI B, et al. Control of Grain Size and Rice Yield by GL2-Mediated Brassinosteroid Responses[J]. Nature Plants, 2015, 2: 15195. doi: 10.1038/nplants.2015.195 [13] SONG X J, TAKESHI K, MADOKA A, et al. Rare Allele of a Previously Unidentified Histone H4 Acetyltransferase Enhances Grain Weight, Yield, and Plant Biomass in Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81. doi: 10.1073/pnas.1421127112 [14] MICHELMORE R W, PARAN I, KESSELI R V. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: a Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations[J]. The Journal of Endocrinology, 1991, 88(21): 9828-9832. [15] MURRAY M G, THOMPSON W F. Rapid Isolation of High Molecular Weight Plant DNA[J]. Chemistry Open, 1980, 8(19): 4321-4325. [16] 方小梅, 罗近瑜, 黄科慧, 等. 甜荞FePG1基因克隆及表达分析[J]. 西南大学学报(自然科学版), 2021, 43(12): 49-56. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2021.12.006 [17] ZHU L, HU J, ZHU K M, et al. Identification and Characterization of Shortened Uppermost Internode 1, a Gene Negatively Regulating Uppermost Internode Elongation in Rice[J]. Plant Molecular Biology, 2011, 77(4-5): 475-487. doi: 10.1007/s11103-011-9825-6 [18] YIN H F, GAO P, LIU C W, et al. SUI-Family Genes Encode Phosphatidylserine Synthases and Regulate Stem Development in Rice[J]. Planta, 2013, 237(1): 15-27. doi: 10.1007/s00425-012-1736-5 [19] MA J, CHENG Z, CHEN J, et al. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis[J]. PLoS One, 2016, 11(4): e0153119. doi: 10.1371/journal.pone.0153119 [20] ASHIKARI M, WU J, YANO M, et al. Rice Gibberellin-Insensitive Dwarf Mutant Gene Dwarf1 Encodes the Alpha-Subunit of GTP-Binding Protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10284-10289. doi: 10.1073/pnas.96.18.10284 [21] OKI K, KITAGAWA K, FUJISAWA Y, et al. Function of Alpha Subunit of Heterotrimeric G Protein in Brassinosteroid Response of Rice Plants[J]. Plant Signaling & Behavior, 2009, 4(2): 126-128. [22] ZHANG D, ZHANG M, LIANG J. RGB1 Regulates Grain Development and Starch Accumulation through Its Effect on OsYUC11-Mediated Auxin Biosynthesis in Rice Endosperm Cells[J]. Frontiers in Plant Science, 2021, 12: 585174. doi: 10.3389/fpls.2021.585174 [23] LYU J, WANG D, DUAN P, et al. Control of Grain Size and Weight by the GSK2-LARGE1/OML4 Pathway in Rice[J]. The Plant Cell, 2020, 32(6): 1905-1918. doi: 10.1105/tpc.19.00468 [24] SEGAMI S, KONO I, ANDO T, et al. Small and round Seed 5 Gene Encodes Alpha-Tubulin Regulating Seed Cell Elongation in Rice[J]. Rice, 2012, 5(1): 4 doi: 10.1186/1939-8433-5-4