-
开放科学(资源服务)标志码(OSID):
-
粒型是水稻的重要农艺性状,既是产量的重要组成部分,也是外观品质的决定因素之一. 其形态是一个复合性状,主要是由粒长、粒宽、长宽比及粒厚决定,受多基因调控[1]. Gramene数据库(https://archive.gramene.org/qtl/)中收录的水稻籽粒相关性状的QTLs已超过560个,其中部分基因的遗传机理已经被解析. 水稻籽粒大小受复杂遗传网络的调控,涉及G蛋白信号通路、丝裂原活化蛋白激酶(MAPK)信号通路、泛素-蛋白酶体通路、植物激素信号通路、转录调控因子等[2-3].
GS3是通过G蛋白信号通路调控水稻籽粒的QTL,也是在水稻中发现的第1个调控粒长和粒质量的QTL[4],由5个外显子组成,编码产物为跨膜蛋白. 序列分析表明,与小粒品种相比,所有大粒品种的第2外显子均发生无义突变,导致GS3蛋白C端178个氨基酸缺失,造成蛋白翻译提前终止,表明GS3负调控水稻的粒长和粒质量[4-5].
丝裂原活化蛋白激酶(MAPK)是一系列细胞内级联反应的组成部分,可对多种细胞外刺激做出反应[6]. 研究结果显示,MAPK信号通路参与植物生长发育的许多方面,MAPK磷酸酶(MAPK phosphatase,MKP)特异性地将激活的MAPK中的磷酸基去除,从而使其失活[6]. 通过对OsMKK10功能缺失突变体、过表达株系和OsMKK4功能获得突变体的研究表明,OsMKKK10-OsMKK4-OsMPK6级联信号通路调控水稻籽粒大小[7].
GW2编码一个环形E3泛素连接酶,通过泛素-蛋白酶体通路负向调控细胞分裂,影响水稻粒宽和粒质量[8]. OsARF19由生长素和BR共同诱导,通过植物激素调控水稻籽粒大小,OsARF19与BR受体基因OsBR11的启动子结合,直接影响OsBR11的表达,而过表达OsARF19会导致植物表现出矮秆、窄叶、瘪粒和叶片角度增大[9]. GLW7编码植物转录因子OsSPL13,正向调控颖壳细胞的大小,从而造成籽粒的长度、厚度和质量增加[10]. GW8是含有SBP结构域的转录因子,调节水稻籽粒宽度,可直接与GW7启动子结合,抑制其表达[11]. GS2编码OsGRF4,是一种转录调控因子,通过促进细胞分裂和细胞扩张来调控颗粒大小[12].
染色体片段代换系(Chromosomal Segment Substitution Line,CSSL)是研究数量性状的良好材料[13],能将复杂的数量性状分解成含有少量供体亲本代换片段而遗传背景又与受体亲本基本一致的简单性状,从而简化技术难度,提高实验精度. 在前期研究中,我们以日本晴(Nipponbare)为受体亲本,优良恢复系R225为供体亲本,结合多代回交、自交以及分子标记辅助选择(MAS)等方法,培育出了水稻长宽粒染色体片段代换系Z8. 本研究利用日本晴/Z8构建的次级F2分离群体,进行重要农艺性状的QTL定位;同时基于定位结果,结合MAS选育携带代换片段更少、遗传背景更为纯合的次级代换系. 相关研究结果将为水稻粒长、粒宽等重要农艺性状的遗传机理解析奠定理论基础,并提供必要的材料支撑.
QTL Mapping of Important Agronomic Traits and Breeding of Secondary Substitution Lines of CSSL-Z8 in Rice
-
摘要: 粒型是水稻重要的农艺性状,由多个基因调控,属于典型的数量性状,与产量密切相关. 染色体片段代换系(Chromosomal Segment Substitution Line,CSSL)是研究数量性状的良好材料,能够将复杂的数量性状转化成单个的遗传因子,从而有效分离主效数量性状基因座(Quantitative trait locus,QTL)或关键基因,并准确估算其遗传效应. 以粳稻日本晴(Nipponbare)为受体,优良恢复系R225为供体构建的CSSL群体中鉴定到1个水稻长宽粒代换系Z8,其携带14个来自供体亲本R225的染色体片段,平均代换长度8.41 Mb. 与受体亲本日本晴相比,Z8的粒长、粒宽、长宽比、株高、一次枝梗数、二次枝梗数、千粒质量、着粒密度和每穗总粒数等性状均增加(p<0.01或p<0.05),有效穗数、穗长和结实率均降低(p<0.01),而每穗实粒数和单株产量的差异无统计学意义. 扫描电镜检测表明,Z8籽粒外颖壳表皮细胞长度、宽度分别增加了33.14 μm和5.20 μm(p<0.01),而单位面积细胞数目则减少了3.4个(p<0.01),表明Z8籽粒变宽、变长可能是由于籽粒外颖壳细胞纵向和横向增大所致. 利用日本晴/Z8构建的次级F2分离群体对粒长、粒宽等10个农艺性状进行QTL定位,共鉴定到33个QTLs,其中粒长、粒宽和长宽比各6个,千粒质量4个,株高和穗长各3个,每穗实粒数2个,一次枝梗数、二次枝梗数与结实率各1个,贡献率在2.04%~88.67%之间. 结合QTL定位与分子标记辅助选择(MAS),从F3家系中鉴定到2个含目标性状QTL的双片段代换系,4个三片段代换系,3个四片段代换系,14个五片段及以上代换系. 目标性状的QTL定位以及次级代换片段的成功选育,为进一步研究目标性状的遗传机理提供了良好的理论参考和材料支撑.Abstract: Grain type is an important agronomic trait of rice, which is regulated by multiple genes, exhibiting typical quantitative traits features and closely related to the yield performance of rice varieties. Chromosomal segment substitution line (CSSL) is ideal material for the dissection of quantitative traits, through which the inheritance of complex quantitative traits could be disintegrated into patterns with single QTL or major gene under purified genetic background. In the present study, an elite chromosomal segment substitution line of Z8 (CSSL-Z8) in rice with increased grain length and width was screened out from the CSSL library constructed by the cross of Nipponbare (receptor) and restorer line R225 (donor). Results of molecular characterization showed that CSSL-Z8 contained 14 introduced chromosomal segments from R225, with an average length of 8.41 Mb. Compared with Nipponbare, CSSL-Z8 possessed statistically increased grain length, grain width, ratio of grain length/width, plant height, number of primary and secondary branches, 1000-grain weight, seed density, and total grains per panicle (p < 0.05 or p < 0.01). The effective panicle number, panicle length, and seed setting rate of CSSL-Z8 decreased significantly (p < 0.01). There no statistical differences were observed for the number of grains per panicle and yield per plant between Nipponbare and CSSL-Z8. The results of scanning electron microscopy showed that the cell length and width of outer glume of CSSL-Z8 increased by 33.14 μm and 5.20 μm (p < 0.01), respectively, while the cell number of outer glume of CSSL-Z8 decreased by 3.4 (p < 0.01), indicating that the increased grain length and width of CSSL-Z8 might be caused by the longitudinal and lateral enlargement of outer glume cells. QTLs for 10 agronomic traits, including grain length and width, were identified through the F2 population constructed by Nipponbare/CSSL-Z8. A total of 33 QTLs were identified, i.e., six for each of grain length, width, and ratio of grain length/width, four for 1000-grain weight, three for both of plant height and panicle length, two for grains per panicle; and one for each of the number of primary branches, the number of secondary branches, and seed setting rate. The contribution (%) of these QTLs to the corresponding traits ranged from 2.04% to 88.67%. Based on the results of QTL mapping, two double-, four triple-, three quadruple-, and 14 quintuple-fragment substitution lines containing target QTLs for interest traits were screened from F3 family-lines through marker assisted selection (MAS). In conclusion, the QTL mapping and breeding of secondary CSSLs containing target QTLs provide potential genetic material supporting and theoretical references for the further research on the genetic mechanism of target traits in rice.
-
表 1 日本晴与Z8重要农艺性状(x±s)
性状 日本晴 Z8 株高/cm 90.75±5.99 99.53±3.25** 有效穗数 9.50±2.50 6.70±1.64** 穗长/cm 19.84±1.35 16.43±0.68** 一次枝梗数 9.44±0.93 12.36±0.55** 二次枝梗数 15.09±3.28 23.22±3.35** 粒长/mm 6.98±0.08 8.16±0.09** 粒宽/mm 3.30±0.06 3.47±0.03** 长宽比 2.12±0.04 2.35±0.02** 每穗实粒数 87.39±10.93 86.61±11.59 每穗总粒数 98.67±12.57 135.62±44.96* 结实率/% 88.60±2.59 67.28±13.97** 千粒质量/g 23.62±1.04 26.71±1.08** 着粒密度 49.75±5.55 82.23±25.63** 单株产量/g 17.97±7.46 15.99±3.99 注:*表示p<0.05,**表示p<0.01,差异有统计学意义. 表 2 日本晴/Z8构建的次级F2群体表型
性状 x±s 范围 偏度 峰度 株高/cm 107.29±12.63 67.90~140.10 -0.02 0.29 有效穗数 12.18±3.00 6.00~15.00 1.18 1.93 穗长/cm 17.23±2.44 11.18~24.64 0.55 0.28 一次枝梗数 11.30±1.15 8.80~14.25 0.01 -0.58 二次枝梗数 17.30±5.71 5.83~31.18 0.43 -0.33 粒长/mm 7.57±0.24 7.06~8.18 0.14 -0.43 粒宽/mm 3.34±0.12 2.89~3.59 -0.46 0.44 长宽比 2.27±0.10 2.05~2.67 0.54 1.33 每穗实粒数 72.53±22.65 27.50~148.91 0.62 0.54 每穗总粒数 106.38±24.65 58.50~177.43 0.66 0.38 结实率/% 68.05±13.56 37.80~90.93 -0.21 -0.88 千粒质量/g 22.15±2.22 17.70~27.30 0.15 -0.68 着粒密度 62.17±12.96 34.36~120.84 1.19 3.78 单株产量/g 23.15±13.89 3.00~85.40 2.00 5.34 表 3 Z8代换系携带的与水稻粒型相关性状QTL
性状 QTL 染色体 连锁标记 估计效应值 表型贡献率/% p值 粒长/mm qGL1 1 RM3426 -0.04 3.53 0.036 5 qGL2-1 2 RM1038 0.06 7.83 0.002 1 qGL2-2 2 RM6843 0.05 4.44 0.018 2 qGL7-1 7 RM3826 0.08 14.40 0.000 2 qGL9 9 RM1189 -0.04 3.46 0.040 3 qGL11 11 RM457 -0.06 8.53 0.002 0 粒宽/mm qGW2-4 2 RM1385 -0.03 8.32 0.003 5 qGW6 6 RM3183 -0.03 6.81 0.041 4 qGW7-1 7 RM3826 0.02 4.70 0.026 2 qGW8-2 8 RM223 0.02 3.41 0.079 3 qGW8-3 8 RM6845 0.01 3.43 0.047 2 qGW9 9 RM1189 -0.02 4.80 0.015 2 长宽比 qRLW1 1 RM3426 -0.02 7.87 0.002 0 qRLW2-1 2 RM1038 0.02 5.81 0.007 8 qRLW2-2 2 RM6843 0.02 4.50 0.017 8 qRLW2-4 2 RM1385 0.02 7.68 0.005 6 qRLW6 6 RM3183 0.03 10.58 0.013 9 qRLW11 11 RM457 -0.02 3.47 0.046 7 株高/cm qPH2-3 2 RM5804 -2.72 7.33 0.012 5 qPH7-2 7 RM172 4.87 22.43 <0.000 1 qPH9 9 RM1189 -9.43 88.67 <0.000 1 穗长/cm qPL2-1 2 RM1038 -0.37 3.98 0.039 6 qPL8-1 8 RM310 0.61 10.68 0.010 4 qPL9 9 RM1189 -2.09 63.07 <0.000 1 一次枝梗数 qNPB1 1 RM3426 0.25 4.43 0.003 7 二次枝梗数 qSPB1 1 RM3426 1.90 11.96 <0.000 1 每穗粒数 qSPP1 1 RM3426 6.37 6.97 0.000 8 qSPP8-1 8 RM310 4.17 2.76 0.030 9 结实率/% qSSR2-2 2 RM6843 -0.02 2.04 0.047 0 千粒质量/g qKGW1 1 RM3426 -0.38 3.35 0.039 8 qKGW7-1 7 RM3826 0.48 4.90 0.023 5 qKGW8-3 8 RM6845 0.46 5.02 0.016 8 qKGW9 9 RM1189 -1.05 25.09 <0.000 1 -
[1] JIANG H, ZHANG A, LIU X, et al. Grain Size Associated Genes and the Molecular Regulatory Mechanism in Rice[J]. International Journal of Molecular Sciences, 2022, 23(6): 3169. doi: 10.3390/ijms23063169 [2] ZUO J, LI J. Molecular Genetic Dissection of Quantitative Trait Loci Regulating Rice Grain Size[J]. Annual Review of Genetics, 2014, 48: 99-118. doi: 10.1146/annurev-genet-120213-092138 [3] LI N, XU R, LI Y. Molecular Networks of Seed Size Control in Plants[J]. Annual Review of Plant Biology, 2019, 70: 435-463. doi: 10.1146/annurev-arplant-050718-095851 [4] FAN CC, XING Y Z, MAO H L, et al. GS3, a Major QTL for Grain Length and Weight and Minor QTL for Grain Width and Thickness in Rice, Encodes a Putative Transmembrane Protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. doi: 10.1007/s00122-006-0218-1 [5] MAO H, SUN S, YAO J, et al. Linking Differential Domain Functions of the GS3 Protein to Natural Variation of Grain Size in Rice[J]. Proceedings of the National Academy of Sciences USA, 2010, 107(45): 19579-19584. doi: 10.1073/pnas.1014419107 [6] BENTA F. Plant Mitogen-Activated Protein Kinase Cascades: Negative Regulatory Roles Turn out Positive[J]. Proceedings of the National Academy of Sciences USA, 2001, 98(3): 784-786. doi: 10.1073/pnas.98.3.784 [7] XU R, DUAN P, YU H, et al. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice[J]. Molecular Plant, 2018, 11(6): 860-873. doi: 10.1016/j.molp.2018.04.004 [8] SONGX J, HUANG W, SHI M, et al. A QTL for Rice Grain Width and Weight Encodes a Previously Unknown RING-Type E3 Ubiquitin Ligase[J]. Nature Genetics, 2007, 39(5): 623-630. doi: 10.1038/ng2014 [9] ZHANG S, WANG S, XU Y, et al. The Auxin Response Factor, OsARF19, Controls Rice Leaf Angles through Positively Regulating OsGH3-5 and OsBRI1[J]. Plant Cell Environ, 2015, 38(4): 638-654. doi: 10.1111/pce.12397 [10] SI L, CHEN J, HUANG X, et al. OsSPL13 Controls Grain Size in Cultivated Rice[J]. NatGenet, 2016, 48(4): 447-456. [11] WANG S, LI S, LIU Q, et al. The OsSPL16-GW7 Regulatory Module Determines Grain Shape and Simultaneously Improves Rice Yield and Grain Quality[J]. Nature Genetics, 2015, 47(8): 949-954. doi: 10.1038/ng.3352 [12] HU J, WANG Y, FANG Y, et al. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. doi: 10.1016/j.molp.2015.07.002 [13] ZHANG G. Target Chromosome-Segment Substitution: A Way to Breeding by Design in Rice. The Crop Journal, 2021, 9(3): 658-668. doi: 10.1016/j.cj.2021.03.001 [14] 王大川, 汪会, 马福盈, 等. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(1): 140-146. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202001015.htm [15] PATERSON A H, DAMON S, HEWITTJ D, et al. Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations, and Environments[J]. Genetics, 1991, 127(1): 181-197. doi: 10.1093/genetics/127.1.181 [16] 韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. [17] MCCOUCH S R, KOCHERT G, YU Z H, et al. Molecular Mapping of Rice Chromosomes[J]. Theoretical and Applied Genetics, 1988, 76(6): 815-829. doi: 10.1007/BF00273666 [18] ZHAO F M, TAN Y, ZHENG L Y, et al. Identification of Rice Chromosome Segment Substitution Line Z322-1-10 and Mapping QTLs for Agronomic Traits from the F3 Population[J]. Cereal Research Communications, 2016, 44(3): 370-380. doi: 10.1556/0806.44.2016.022 [19] TIAN P, LIU J, MOU C, et al. GW5-Like, a Homolog of GW5, Negatively Regulates Grain Width, Weight and Salt Resistance in Rice[J]. J Integr Plant Biol, 2019, 61(11): 1171-1185. doi: 10.1111/jipb.12745 [20] DUAN P, RAO Y, ZENG D, et al. SMALL GRAIN 1, which Encodes a Mitogen-Activated Protein Kinase Kinase 4, Influences Grain Size in Rice[J]. The Plant Journal, 2014, 77(4): 547-557. doi: 10.1111/tpj.12405 [21] MIAO C B, WANG Z, ZHANG L, et al. The Grain Yield Modulator MiR156 Regulates Seed Dormancy through the Gibberellin Pathway in Rice[J]. Nature Communications, 2019, 10(1): 3822. doi: 10.1038/s41467-019-11830-5 [22] ZHAO Y F, PENG T, SUN H Z, et al. MiR1432-OsACOT (Acyl-CoA Thioesterase) Module Determines Grain Yield via Enhancing Grain Filling Rate in Rice[J]. Plant Biotechnology Journal, 2019, 17(4): 712-723. doi: 10.1111/pbi.13009 [23] HUANG X, QIAN Q, LIU Z, et al. Natural Variation at the DEP1 Locus Enhances Grain Yield in Rice[J]. Nature Genetics, 2009, 41(4): 494-497. doi: 10.1038/ng.352 [24] YANG X, ZHAO X, DAI Z, et al. OsmiR396/Growth Regulating Factor Modulate Rice Grain Size through Direct Regulation of Embryo-Specific miR408[J]. Plant Physiology, 2021, 186(1): 519-533. doi: 10.1093/plphys/kiab084 [25] YU X Q, XIASS, XU Q K, et al. ABNORMAL FLOWER AND GRAIN 1 Encodes OsMADS6 and Determines Palea Identity and Affects Rice Grain Yield and Quality[J]. Science China Life Sciences, 2020, 63(2): 228-238. doi: 10.1007/s11427-019-1593-0 [26] NIU B, ZHANG Z, ZHANG J, et al. The Rice LEC1-Like Transcription Factor OsNF-YB9 Interacts with SPK, an Endosperm-Specific Sucrose Synthase Protein Kinase, and Functions in Seed Development[J]. The Plant Journal, 2021, 106(5): 1233-1246. doi: 10.1111/tpj.15230 [27] ZHU X, LIANG W, CUI X, et al. Brassinosteroids Promote Development of Rice Pollen Grains and Seeds by Triggering Expression of Carbon Starved Anther, a MYB Domain Protein[J]. The Plant Journal, 2015, 82(4): 570-581. doi: 10.1111/tpj.12820 [28] FENG Z, WU C, WANG C, et al. SLG Controls Grain Size and Leaf Angle by Modulating Brassinosteroid Homeostasis in Rice[J]. J Exp Bot, 2016, 67(14): 4241-4253. doi: 10.1093/jxb/erw204 [29] HUANG K, WANG D, DUAN P, et al. WIDE AND THICK GRAIN 1, which Encodes an Otubain-Like Protease with Deubiquitination Activity, Influences Grain Size and Shape in Rice[J]. The Plant Journal, 2017, 91(5): 849-860. doi: 10.1111/tpj.13613 [30] YUAN H, QIN P, HU L, et al. OsSPL18 Controls Grain Weight and Grain Number in Rice[J]. J Genet Genomics, 2019, 46(1): 41-51. doi: 10.1016/j.jgg.2019.01.003 [31] ZHANG L, WANG R, XING Y, et al. Separable Regulation of POW1 in Grain Size and Leaf Angle Development in Rice[J]. Plant Biotechnology Journal, 2021, 19(12): 2517-2531. doi: 10.1111/pbi.13677 [32] LI Z K, FU B Y, GAO Y M, et al. Genome-Wide Introgression Lines and Their Use in Genetic and Molecular Dissection of Complex Phenotypes in Rice (Oryza sativa L. )[J]. Plant Molecular Biology, 2005, 59(1): 33-52. doi: 10.1007/s11103-005-8519-3 [33] CHEN J, WANG J, CHEN W, et al. Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations[J]. Plant Physiol, 2018, 178(2): 612-625. doi: 10.1104/pp.18.00490