[1]
|
BOUSSINESQ J.Theorie Des Ondes et de Remous Qqui se Propagentle Long d'un Ccanal Rectangularly Horizontal,et Communiquant au Liquide Contene Dans ce Canal Des Vitesses Sensiblement Pareilles de la Surface au Fond[J].J Math Pures Appl,1872,17(2):55-108.
|
[2]
|
LIU Y.Strong Instability of Solitary Wave Solutions of a Generalized Boussinesq Equation[J]. J Differ Equations,2000, 164(2):223-239.
|
[3]
|
VARLAMOV V V.On the Cauchy ProblemfortheDampedBoussinesq Equation[J].DifferentialandIntegral Equations,1996, 9(3):619-634.
|
[4]
|
XUE R Y.Local and Global Existence of Solutions for the Cauchy Problem of a Generalized Boussinesq Eqution[J].JMathAnalAppl,2006, 316(1):307-327.
|
[5]
|
WANG Y Z.Existence and Nonexistence of Global Solutions for a Class of Nonlinear Wave Equations of Higher Order[J]. Nonlinear Analysis, 2010, 72(12):4500-4507.
|
[6]
|
PISKIN E.Blow up of Solutions for the Cauchy Problem of the Damped Sixth-Order Boussinesq Equation[J]. Theoretical Mathematics & Applications, 2013, 4(3):61-71.
|
[7]
|
张媛媛, 宋志华. 具耗散项波动方程整体吸引子的Hausdorff维数[J]. 西南师范大学学报(自然科学版), 2014, 39(3):1-6.
|
[8]
|
马亮亮, 刘冬兵.Coimbra变时间分数阶扩散-波动方程的新隐式差分法[J]. 西南师范大学学报(自然科学版), 2015, 40(3):25-31.
|
[9]
|
WANG H W, ESFAHANI A.Global Rough Solutions to the Sixth-Order Boussinesq Equation[J]. Nonlinear Analysis:Theory,Methods & Applications, 2014, 102:97-104.
|
[10]
|
WANG Y X.On the Cauchy Problem for One Dimension Generalized Boussinesq Equation[J]. International Journal of Mathematics, 2015, 26(3):1550023.
|
[11]
|
JEFFERY R,MICHAEL R.Nonlinear Microlocal Analysis of Semilinear Hyperbolic Systems in One Space Dimension[J].J Duke Math,1982, 49(2):397-475.
|