[1]
|
WANG W D,ZHAO X Q.An Age-Structured Epidemic Model in a Patchy Environment[J].SIAMJ Appl Math,2005, 65(5):1597-1614.
|
[2]
|
AIELLO W G,FREEDMAN H I.A Time-Delay Model of Single-Species Growth with Stage Structure[J].Mathematical Biosciences,1990, 101(2):139-153.
|
[3]
|
ALELLO W G,FREEDMAN H I, WU J.Analysis of a Model Representing Stage-Structured Populations Growth with Stage-Dependent Time Delay[J].Siam Journal on Applied Mathematics,1992,52(3):855-869.
|
[4]
|
LIU X,ZHAO X Q.A Periodic Epidemic Model with Age Structure in a Patchy Environment[J].SIAM J Appl Math,2011,71(6):1896-1917.
|
[5]
|
XIAO Y N,CHEN L S.An SIS Epidemic Model with Stage Structure and a Delay[J].Acta Mathematicae Applicatae Sinica,2002,18(4):607-618.
|
[6]
|
ZHANG T L,LIU J L,TENG Z D.Stability of Hopf Bifurcation of a Delayed SIRS Epidemic Model with Stage Structure[J].Nonlinear Analysis:Real World Applications,2010,11(1):293-306.
|
[7]
|
金瑜, 张勇, 王稳地.一类具有阶段结构的传染病模型[J].西南师范大学学报(自然科学版), 2003, 28(6):863-868.
|
[8]
|
WANG W D,CHEN L S.A Predator-Prey Systern with Stage-Structure for Predator[J].Computers Math Applic, 1997,33(8):83-91.
|
[9]
|
WANG L,XU R,TIAN X H.Global Stability of a Predator-Prey Model with Stage Structure for the Predator[J].World Journal of Modelling & Simulation,2009,5(3):63-70.
|
[10]
|
LU Z H,GAO S J,CHEN L S.Analysis of an SI Epidemic Model with Nonlinear Transmission and Stage Structure[J]. Acta Mathematica Scientia,2003,23(4):440-446.
|