-
氯消毒是一种十分常见的消毒方式,也是目前世界上使用最广泛的一种饮用水消毒方式[1-3],美国自来水厂中约有94.5%采用氯消毒[4],我国约有99.5%以上水厂采用氯消毒[5].但是,氯在消毒过程中会与水中的天然有机物反应产生消毒副产物(disinfection by-products,DBPs),目前在饮用水中检出的消毒副产物中,卤乙酸(haloacetic acids,HAAs)和三卤甲烷(trihalomethanes,THMs)的含量最高[6-9],大约占总卤代DBPs的25%[10].许多研究人员通过实验证明,DBPs对动物和人类会造成不同程度的损害,严重的话还有可能致癌[2-3, 6].动物实验表明,4种THMs对大鼠均具有致癌性,三氯甲烷(trichloromethane,TCM)、溴仿(tribromethane,TBM)、二溴一氯甲烷(dibromochloromethane,DBCM)和一溴二氯甲烷(Bromodichloromethane,BDCM)分别能够引起大鼠的肝肿瘤、肠肿瘤、和肾肿瘤[1-2, 11];DBCM诱导染色体变异或姐妹染色体互换,TBM诱导姐妹染色体互换[12].体外实验表明,5种HAAs都可以导致细菌发生突变并破坏哺乳动物细胞中的DNA[13-16];在摄入途径暴露中,二溴乙酸(dibromoacetic acid,DBAA)、二氯乙酸(dichloroacetic acid,DCAA)和三氯乙酸(trichloroacetic acid,TCAA)会导致肿瘤产生,一氯乙酸(Monochloroacetic acid,MCAA)、一溴乙酸(Monobromoacetic Acid,MBAA)也有一定的细胞毒性[17].在卤代消毒副产物中(chlorinated disinfection by-products, Cl-DBPs),氯代三卤甲烷(Cl-THMs)和氯代卤乙酸(Cl-HAAs)的含量是最高的,人们对于这两种物质的关注程度也是最高的[9],也对其进行了比较充分的研究[18].但是,研究发现,相对于Cl-DBPs,虽然溴代消毒副产物(brominated disinfection byproducts,Br-DBPs)的浓度不高,但毒性更强[1, 7, 9, 19],有研究显示,后者的细胞毒性和基因毒性指数比前者高出近千倍[20]. THMs对慢性CHO细胞的细胞毒性的排序为TBM>DBCM>TCM>BDCM,致诱变潜能的排序是TBM>BDCM>DBCM[21]. 5种HAAs的细胞毒性顺序为MBAA>DBAA>MCAA>DCAA>TCAA,遗传毒性顺序为MBAA>MCAA>DBAA>TBA[22].因而Br-DBPs也引起了越来越多的关注[1, 9, 22-23].
溴离子大多作为一种阴离子广泛存在于各类水体中,主要来自海水入侵、工业和油田废水[1, 6, 11].世界范围内各类引用水源中溴离子质量浓度为2~4 mg·L-1[24].根据对我国不同地区13处饮用水水源水质的调查,溴离子质量浓度为10~249 μg·L-1,其中有8处高于50 μg·L-1[3].在对饮用水进行预氯化和消毒时,次氯酸(hypochlorous acid,HOCl)与溴离子迅速发生氧化反应,生成次溴酸(hypobromous acid,HOBr),水中的一些天然物质与HOBr也会发生反应,生成Br-DBPs,这一过程改变了水中DBPs的组成及比例[6, 11, 25-27].根据动力学研究的结果显示,相对于HOCl与有机物之间的反应来说,HOBr的反应速度要更快[3, 6-9],因此,溴离子的质量浓度虽然相对于氯的质量浓度要低很多,但是依然优先生成Br-DBPs.在低质量浓度环境下,溴离子的影响是不可忽视的,且随着溴离子质量浓度的逐渐升高,DBPs会逐渐由氯代产物逐渐演变为氯代溴代混合产物,反应完成之后,就会完全变为溴代产物[8-9].所以,有必要对于Br-DBPs的控制投入更多的研究.
目前关于消毒副产物的研究主要是THMs和HAAs中受管制的几种,而且这几类在常规水处理工艺出水中的浓度最高,并被列入了容易致癌的清单.以往的研究大都是在高浓度溴离子条件下针对氯消毒过程所产生的Br-DBPs[1, 4],其浓度远高于自然水体中的值,结果不能表达真实过程.因此,本文就受管制的4种THMs和5种HAAs进行研究,主要分析低质量浓度溴离子变化对水处理过程中产生的THMs,HAAs质量浓度及其对溴在二者中分配的影响,以期为控制水处理过程中生成的Br-DBPs提供依据,比高质量浓度溴离子的研究具有更强的现实意义.
Effects of Bromide Ions on Disinfection By-Products during Water Treatment Processes
-
摘要: 为了解低质量浓度溴离子对饮用水中消毒副产物的影响,以天津市某给水厂的水源水作为实验对象,模拟整个给水处理厂工艺流程,研究了溴离子质量浓度对预氯化和混凝沉淀、过滤、消毒等水处理工艺出水中受管制的三卤甲烷(THMs)和卤乙酸(HAAs)质量浓度变化的影响,并分析了溴离子质量浓度(50~200 μg·L-1)对不同水处理工艺中溴在THMs和HAAs中分配的影响.结果表明:随着溴离子质量浓度的增加,各工艺出水中的溴代三卤甲烷和总THMs的质量浓度均有一定程度的上升,三氯甲烷质量浓度则有所下降;二溴乙酸、一溴乙酸的质量浓度也有不同程度的升高,一氯乙酸质量浓度基本保持不变,二氯乙酸(DCAA)、三氯乙酸(TCAA)质量浓度逐渐下降,且各工艺出水中的DCAA和TCAA质量浓度均远高于其余几种HAAs的质量浓度;各工艺出水中THMs和HAAs的溴结合因子均升高.但是在本文设定的溴离子质量浓度变化范围内,各工艺中溴在THMs和HAAs中分配的比例分别为72%~79%和21%~28%,表明溴离子在低质量浓度情况下,对溴在THMs和HAAs中分配影响不大,且仅预氯化和消毒改变了氯代和溴代消毒副产物的比例.Abstract: In order to understand the influence of low-concentration bromide ion on disinfection by-products in drinking water, a simulation experiment of drinking water treatment process has been established in this study. The effects of bromide ion(50~200 μg·L-1) on trihalomethanes (trichloromethane, tribromethane, dibromochloromethane, bromodichloromethane) and haloacetic acids (chloroacetic acid, bromoacetic acid, dichloroacetic acid, dibromoacetic acid, trichloroacetic acid) during water treatment processes (pre-chlorination, coagulation sedimentation, filtration and disinfection) have been studied. With the increase of the concentration of bromine ion, the following results have been drawn that the concentration of Br-THMs and total THMs increases gradually with the increase of bromide ion concentration in different process, while the concentration of TCM decreases gradually; the concentration of DCAA and TCAA gradually decreased, while MBAA and DBAA increased, and MCAA remained stable; the bromide incorporation factors of trihalomethanes and haloacetic acids increased with the increase of bromide ion. In the range the concentration of bromine ion set in this article, the proportion of bromine in THMs and HAAs in each process was 72%~79% and 21%~28%, respectively. It shows that the low-concentration bromide ion had a little influence on the allocation of bromide between trihalomethanes and haloacetic acids. Among four unit water treatment processes, only pre-chlorination and disinfection could change the proportion of brominated disinfection by-products to chlorinated disinfection by-products.
-
Key words:
- bromide ion /
- THMs /
- HAAs /
- bromide incorporation factor /
- water treatment process /
-
表 1 实验原水水质
水质指标 范围 平均值 温度/℃ 24.8~27.4 26.1 pH值 7.95~8.43 8.22 浊度/NTU 3.29~8.40 5.39 氨氮/mg·L-1 0.16~0.23 0.18 UV2SS/cm-1 0.049~0.062 0.058 TOC/mg·L-1 2.82~3.80 3.43 -
[1] ZHA X, LIU Y, LIU X, et al.Effects of Bromide and Iodide Ions on the Formation of Disinfection By-Products During Ozonation and Subsequent Chlorination of Water Containing Biological Source Matters[J].Environmental Science and Pollution Research, 2014, 21(4):2714-2723. doi: 10.1007/s11356-013-2176-x [2] CHOWDHURY S, CHAMPAGNE P, MCLELLAN P J.Investigating Effects of Bromide Ions on Trihalomethanes and Developing Model for Predicting Bromodichloromethane in Drinking Water[J]. Water Research, 2010, 44(7):2349-2359. doi: 10.1016/j.watres.2009.12.042 [3] ZHANG J, YU J, AN W, et al.Characterization of Disinfection Byproduct Formation Potential in 13 Source Waters in China[J].Journal of Environmental Sciences, 2011, 23(2):183-188. doi: 10.1016/S1001-0742(10)60440-8 [4] STEPHENSON D.Water Quality and Treatment[M].McGraw-Hill, 1999. [5] 刘文君.给水处理消毒技术发展展望[J].给水排水, 2004, 30(1):2-5. doi: 10.3969/j.issn.1002-8471.2004.01.002 [6] LIU S, ZHU Z, QIU Y, et al.Effect of Ferric and Bromide Ions on the Formation and Speciation of Disinfection Byproducts During Chlorination[J].Journal of Environmental Sciences-China, 2011, 23(5):765-772. doi: 10.1016/S1001-0742(10)60474-3 [7] WESTERHOFF P, CHAO P, MASH H.Reactivity of Natural Organic Matter with Aqueous Chlorine and Bromine[J].Water research, 2004, 38(6):1502-1513. doi: 10.1016/j.watres.2003.12.014 [8] doi: http://www.ncbi.nlm.nih.gov/pubmed/16719110 HUA G H, RECKHOW D A, KIM J.Effect of Bromide and Iodide Ions on the Formation and Speciation of Disinfection Byproducts During Chlorination[J].Environmental science & technology, 2006, 40(9):3050-3056. [9] UYAK V, TOROZ I.Investigation of Bromide Ion Effects on Disinfection By-Products Formation and Speciation in an Lstanbul Water Supply[J].Journal of Hazardous Materials, 2007, 149(2):445-451. doi: 10.1016/j.jhazmat.2007.04.017 [10] doi: http://www.ncbi.nlm.nih.gov/pubmed/17180964 KRASNER S W, WEINBERG H S, RICHARDSON S D, et al.Occurrence of a New Generation of Disinfection Byproducts[J].Environmental Science & Technology, 2006, 40(23):7175-7185. [11] 王晓红, 何旭伦.溴离子对水体中DOM亲水性有机组分氯化消毒过程中三卤甲烷生成的影响[J].江西化工, 2012(2):57-62. doi: 10.3969/j.issn.1008-3103.2012.02.017 [12] IARC.Humans, Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide[M]. Lyon, France:International Agency for Research on Cancer, 1999. [13] PLEWA M J, KARGALIOGLU Y, VANKERK D, et al.Mammalian Cell Cytotoxicity and Genotoxicity Analysis of Drinking Water Disinfection By-Products[J].Environmental And Molecular Mutagenesis, 2002, 40(2):134-142. doi: 10.1002/(ISSN)1098-2280 [14] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ef0585aa91b701d8c44efcae98a7b10 PLEWA M J, WAGNER E D, RICHARDSON S D, et al.Chemical and Biological Characterization of Newly Discovered Lodoacid Drinking Water Disinfection Byproducts[J].Environmental Science & Technology, 2004, 38(18):4713-4722. [15] doi: http://www.ncbi.nlm.nih.gov/pubmed/16570611 CEMELI E, WAGNER E D, ANDERSON D, et al. Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppresors of Oxidative Stres[J].Environmental Science & Technology, 2006, 40(6):1878-1883. [16] KARGALIOGLU Y, MCMILLAN B J, MINEAR R A, et al.Analysis of the Cytotoxicity and Mutagenicity of Drinking Water Disinfection By-Products in Slmonella Typhimurium[J].Teratogenesis Carcinogenesis and Mutagenesis, 2002, 22(2):113-128. doi: 10.1002/(ISSN)1520-6866 [17] MELNICK R L, NYSKA A, FOSTER P M, et al.Toxicity and Carcinogenicity of the Water Disinfection Byproduct, Dibromoacetic Acid, in Rats and Mice[J].Toxicology, 2007, 230(2-3):126-136. doi: 10.1016/j.tox.2006.11.006 [18] 孙卫玲.林立, 倪晋仁.天然水中离子对消毒过程中挥发性卤代烃生成的影响[J].环境化学, 2004, 23(4):413-419. doi: 10.3321/j.issn:0254-6108.2004.04.011 [19] BOUGEARD C M, GOSLAN E H, JEFFERSON B, et al.Comparison of the Disinfection By-Product Formation Potential of Treated Waters Exposed to Chlorine and Monochloramine[J].Water Research, 2010, 44(3):729-740. doi: 10.1016/j.watres.2009.10.008 [20] RICHARDSON S D, PLEWA M J, WAGNER E D, et al.Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection By-Products in Drinking Water:A Review and Roadmap for Research[J].Mutation Research-Reviews in Mutation Research, 2007, 636(1-3):178-242. doi: 10.1016/j.mrrev.2007.09.001 [21] DEMARINID M, SHELTON M L, WARREN S H, et al.Glutathione S-Transferase-Mediated Induction of GC AT Transitions by Halomethanes in Slmonella[J].Environmental and Molecular Mutagenesis, 1997, 30(4):440-447. doi: 10.1002/(ISSN)1098-2280 [22] PLEWA M J, KARGALIOGLU Y, VANKERK D, et al.Mammalian Cell Cytotoxicity and Genotoxicity Analysis of Drinking Water Disinfection By-Products[J].Environmental and Molecular Mutagenesis, 2002, 40(2):134-142. doi: 10.1002/(ISSN)1098-2280 [23] doi: http://www.sciencedirect.com/science/article/pii/S0043135498002279 ICHIHASHI K, TERANISHI K, ICHIMURA A.Brominated Trihalomethane Formation in Halogenation of Humic Acid in the Coexistence of Hypochlorite and Hypobromite Ions[J].Water Research, 1999, 33(2):477-483. [24] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4d2158a26429e079908a7877ae4355e ZHAI H, ZHANG X.Formation and Decomposition of New and Unknown Polar Brominated Disinfection Byproducts During Chlorination[J].Environmental Science & Technology, 2011, 45(6):2194-2201. [25] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01919510590908931 MYLLYKANGAS T, NISINEN T K, HIRVONEN A.The evaluation of Ozonation and Chlorination on Disinfection By-Product Formation for a High-Bromide Water[J].Ozone-Science & Engineering, 2005, 27(1):19-26. [26] ZHANG H, QU J H, LIU H J, et al.Proportion of Bromo-DBPs in Total DBPs During Reclaimed-Water Chlorination and Its Related Influencing Factors[J].Science in China Series B-Chemistry, 2008, 51(10):1000-1008. doi: 10.1007/s11426-008-0097-1 [27] 梅红, 丁国际, 黄鑫.含溴黄浦江水消毒过程中溴代三卤甲烷和卤乙酸的生成特性[J].环境科学学报, 2011, 31(10):2162-2168. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201110012 [28] 陈杰, 李星, 梁恒, 等.氨氮对预氯化工艺的影响及优化对策[J].工业用水与废水, 2006, 37(2):12-15. doi: 10.3969/j.issn.1009-2455.2006.02.003 [29] USEPA.Method 551.1.Determination of Chlorination Disinfection By-Products, Chlorinated Solvents, and Halogenated Pesticides/herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatograph with Electron-Capture Detection[S].Washington, DC: Office of Research and Development, 1995. [30] USEPA.Method 552.3.Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron-Capture Detection[S].Washington, DC: Office of Research and Development, 1995. [31] ATES N, YETIS U, KITIS M.Effects of Bromide Ion and Natural Organic Matter Fractions on the Formation and Speciation of Chlorination By-Products, Journal of Environmental Engineering-Asce, 2007, 133(10):947-954. doi: 10.1061/(ASCE)0733-9372(2007)133:10(947) [32] 牛志广, 孙媛媛, 张颖.预氯化及常规工艺对消毒副产物的影响[J].环境工程学报, 2015, 9(11):5142-5148. doi: http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201511002 [33] 伍海辉.预氯化消毒副产物生成特性和去除机理研究[D].上海: 同济大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10247-2006193145.htm [34] 王昊宇.臭氧氧化工艺对饮用水中溴代消毒副产物生成的影响[D].北京: 清华大学, 2013. [35] PADHI R K, SATPATHY K K.Formation and Speciation Characteristics of Brominated Trihalomethanes in Seawater Chlorination[J]. Water Environment Research, 2012, 84(11):2003-2009. doi: 10.2175/106143012X13415215906735 [36] 罗培.深度处理工艺对引黄水库水消毒副产物前体物的去除规律研究[D].济南: 山东建筑大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10430-1013206003.htm [37] 孙媛媛.预氯化对溴代消毒副产物的影响研究[D].天津: 天津大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183631.htm