Convergence Analysis of a Cascadic Multigrid Algorithm Combined with Quadratic Finite Element Method
-
摘要: 通过使用二次有限元的节点信息构造二次插值算子为相邻细网格提供迭代初始值,提出了基于二次有限元离散的瀑布型多重网格法,从理论上分析了该算法的收敛性,给出数值算例验证了改进算法的有效性.Abstract: A new cascadic multigrid (SECMG) algorithm combined with quadratic finite element method has been proposed, in which a quadratic interpolation operator has been constructed by means of the nodes information of quadratic finite element cell, to provide an initial guess of iterative solution on the next fine grid. The convergence of the developed algorithm has been analyzed. Numerical results have been presented to verify the feasibility of this new method.
-
表 1 CMG和SECMG求解算例1的数值结果
G I CMG SECMG E t/s E t/s 32*32 2 1.79e-02 0.03 3.52e-03 0.03 64*64 2 8.86e-03 0.09 8.82e-04 0.13 128*128 2 4.42e-03 0.47 2.21e-04 0.54 256*256 2 2.21e-03 13.6 5.52e-05 14.0 表 2 CMG和SECMG求解算例2的数值结果
G I CMG SECMG E t/s E t/s 32*32 2 2.31e-02 0.03 4.46e-03 0.03 64*64 2 1.16e-03 0.09 1.81e-04 0.12 128*128 2 5.78e-03 0.49 8.45e-04 0.55 256*256 2 2.89e-03 13.1 4.15e-05 14.4 -
[1] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s002110050234/ BORNEMANN F A, DEUFLHARD P.The Cascadic Multigrid Method for Elliptic Problems[J].Numerische Mathematik, 1996, 75(2): 135-152. [2] 石钟慈, 许学军, 黄云清.经济的瀑布型多重网格法(ECMG)[J].中国科学(A辑), 2007, 37(9):1083-1098. doi: http://d.old.wanfangdata.com.cn/Periodical/zgkx-ca200709006 [3] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s002110050234/ SHI Z C, XU X J.Cascadic Multigrid Method for Elliptic Problems[J].East-West Journal of Numerical Mathematics, 1999, 7(3): 199-209. [4] 石钟慈, 许学军.Cascadic Multigrid for Parabolic Problems[J].计算数学(英文版), 2000, 18(5):551-560. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jssx-e200005009 [5] 石钟慈, 许学军.一类新的瀑布型多重网格法[J].中国科学(A辑), 2000, 30(9):799-807. doi: http://d.old.wanfangdata.com.cn/Periodical/zgkx-ca200009005 [6] 李郴良, 陈传淼, 许学军.基于超收敛和外推方法的一类新的瀑布型多重网格方法[J].计算数学, 2007, 29(4):439-448. doi: 10.3321/j.issn:0254-7791.2007.04.011 [7] CHEN C M, HU H L.Extrapolation Cascadic Multigrid Method on Piecewise Uniform Grid[J].Science China Mathematics, 2013, 56(12): 2711-2722. doi: 10.1007/s11425-013-4732-8 [8] CHEN C M, HU H L, XIE Z Q, et al.Analysis of Extraplolation Cascadic Multigrid Method (EXCMG)[J]. Science in China, 2008, 51(8): 1349-1360. doi: 10.1007/s11425-008-0119-7 [9] LI M, LI C L, CUI X Z, et al.Cascadic Multigrid Methods Combined with Sixth Order Compact Scheme for Poisson Equation[J].Numerical Algorithms, 2016, 71(4): 715-727. doi: 10.1007/s11075-015-0018-2 [10] 王烈衡, 许学军.有限元方法的数学基础[M].北京:科学出版社, 2004. [11] BANK R, XU J C.Asymptotically Exact A Posteriori Error Estimators, Part Ⅰ:Grids with Super Convergence[J].SIAM Journal on Numerical Analysis, 2003, 41(6):2294-2312. doi: 10.1137/S003614290139874X [12] 陈传淼, 黄云清.有限元高精度理论[M].长沙:湖南科学技术出版社, 1995 [13] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1090-S0025-5718-03-01600-4/ XU J, ZHANG Z.Analysis of Recovery Type A Posteriori Error Estimators for Mildly Structured Grids[J].Mathematics of Computation, 2004, 73:1139-1152. [14] 石钟慈, 王鸣.有限元方法[M].北京:科学出版社, 2010. [15] 李明, 赵金娥.二维椭圆问题的经济外推瀑布多重网格法[J].西南大学学报(自然科学版), 2014, 36(7):68-72. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201407012 [16] 李明, 崔向照, 赵金娥.求解高次有限元方程的外推瀑布型多重网格法[J].西南师范大学学报(自然科学版), 2016, 41(1):20-23. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201601003 [17] WANG B, MENG F, FANG Y.Efficient Implementation of RKN-type Fourier Collocation Methods for Second-Order Differential Equations[J].Applied Numerical Mathematics, 2017, 119:164-178. doi: 10.1016/j.apnum.2017.04.008
计量
- 文章访问数: 566
- HTML全文浏览数: 492
- PDF下载数: 57
- 施引文献: 0