-
人体传感网络(body sensor network,BSN)集成了传感器、电子学、医学、数据分析与融合、人工智能、无线通信和其他创新应用等多学科知识[1]. BSN有着无线化、网络化、信息化的综合优势,将其与物联网(internet of things,IoT)相结合,能够实现人体健康的全程跟踪与服务,可以说由BSN构成的智慧医疗是未来医疗保健低成本化的发展方向之一[2].
每个人都是一个独立的个体样本,其身体状况属性在符合一定规律的同时彼此之间也有着很大的差异性,这些属性在生活习惯、性别和遗传等方面随年龄增长一直在动态变化[3].借助BSN,IoT和云计算开发一种针对人体数据传感的网络架构[4],对个人医疗保健有着非常重要的意义.
现在已经有人提出了基于云系统的各种医疗保健架构方法和服务技术.文献[5]提出一种基于移动的Android应用程序,用于监测心电图信号.文献[6]提出一种多层应用程序架构,集成了云计算平台和人体传感器网络,并允许云端收集、处理、存储和分析采集到的人体数据,但该解决方案不支持边缘计算,也无法满足实时性要求.换言之,在将监测数据从传感器传输到云之后,需要等待云系统计算出结果并做出决定.文献[7]提出一种移动设备的任务卸载方法,任务卸载是基于物联网和雾计算的一种有吸引力的技术,它可以用在传感器设备、边缘节点和云节点之间,但移动设备物理尺寸小,且计算能力非常有限.虽然架构可以将任务卸载到云,但是当网络延迟不可容忍时,这种思路不可行.文献[8]提出一种基于多代理的云监控模型,通过结合人工智能算法来检测错误任务.但是多代理的云监控模型使用代理的主从架构,因此可能会遇到大规模基础架构中的可伸缩性问题[9-11].
在研究了基于中央云的人体感知架构基础上,针对人体健康状态这个领域对于实时性和可移动性特定的要求,本文提出了一种新的人体数据传感架构,在无线传感器网络和云平台之间加入了边缘云服务器,并重新构建了框架和传输协议,设计了能够支持多种类型应用程序的存储架构,优化了传感架构.本文提出的传感架构既可以通过应用程序接口(API)安全地将人体传感数据聚合到中央云,并通过任务调度和资源整合充分利用云计算来处理数据,还能将中央云计算反馈的信息实时发送给处于移动状态的用户.该架构降低了由虚拟机容量限制而导致的故障率,同时降低了整体服务器的利用率,减少了服务时间和处理时间.
Human Body Data Sensing Architecture Based on Edge Cloud Computing
-
摘要: 为了解决基于云平台的架构方法在处理人体监测传感数据时无法很好地支持实时性和可移动性的问题,该文提出一种基于边缘云计算的人体数据传感架构,并将其运用于大数据分析.其构建了3层云计算人体数据流架构,分别由无线体域网、边缘云系统和中央云系统组成.针对人体数据流架构提出了支持实时性和可移动性的移动服务架构,该架构在中央云数据中心和用户之间使用边缘服务器,在此基础上设计了边缘云的数据传感架构,该软件架构包含3层应用程序接口,分别应用于传感器设备、边缘云和中央云.设计了能够支持多种类型应用程序的存储架构,优化传感架构并提高数据存储可靠性.实验结果表明,基于边缘云的架构降低了由虚拟机容量导致的故障率和服务器整体利用率,同时在服务时间和数据处理时间方面均优于现有的架构.Abstract: In order to solve the problem that the cloud platform-based architecture method can not support real-time and mobility when dealing with human body monitoring sensor data, a human body data sensing architecture based on edge cloud computing has been proposed in this paper and been used for big data analysis. It constructs a three-layer cloud computing human body data stream architecture, which is composed of wireless body area network, edge cloud system and central cloud system respectively. Then, a mobile service architecture supporting real-time and mobility is proposed for the human body data stream architecture. The architecture uses the edge server between the central cloud data center and the user, and the edge cloud data sensing architecture is designed. The software architecture consists of three layers of application programming interface for sensor devices, edge clouds, and central clouds. In addition, a storage architecture has been designed in this paper that supports multiple types of applications, optimizes the sensing architecture and improves data storage reliability. The experimental results show that the edge cloud-based architecture reduces the failure rate and overall server utilization caused by virtual machine capacity, and is superior to the existing architecture in terms of service time and data processing time.
-
[1] 郑增威, 杜俊杰, 霍梅梅, 等.基于可穿戴传感器的人体活动识别研究综述[J].计算机应用, 2018, 38(5): 1223-1229, 1238. doi: http://d.old.wanfangdata.com.cn/Periodical/jsjyy201805001 [2] 荀锦锦, 张奎, 王建南.基于物联网的智能医疗的应用研究[J].物联网技术, 2017, 7(11): 51-52. doi: http://d.old.wanfangdata.com.cn/Periodical/wlwjs201711022 [3] doi: https://www.sciencedirect.com/science/article/pii/S0167739X17302121 RAHMANI A M, GIA T N, NEGASH B, et al. Exploiting Smart e-Health Gateways at the Edge of Healthcare Internet-of-Things: a Fog Computing Approach [J]. Future Generation Computer Systems, 2018, 78: 641-658. [4] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a536dc92836584c3640259cfee0970b6 CHEN M, LI W, HAO Y X, et al. Edge Cognitive Computing Based Smart Healthcare System[J]. Future Generation Computer Systems, 2018, 86: 403-411. [5] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ecf79713d155fc6281e30108d406e450 PACE P, ALOI G, GRAVINA R, et al. An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 481-489. [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c56a6ca1c6097fac1262d933c329fc2 MANOGARAN G, VARATHARAJAN R, LOPEZ D, et al. A New Architecture of Internet of Things and Big Data Ecosystem for Secured Smart Healthcare Monitoring and Alerting System[J]. Future Generation Computer Systems, 2018, 82: 375-387. [7] 裘华东, 张燕, 涂莹.移动云计算嵌套式两阶段博弈计算卸载算法[J].科学技术与工程, 2018, 18(32): 58-63. doi: http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201832010 [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9c9eea366ca1b82de511284e724b439 GRZONKA D, JAKÓBIK A, KOŁODZIEJ J, et al. Using a Multi-agent System and Artificial Intelligence for Monitoring and Improving the Cloud Performance and Security[J]. Future Generation Computer Systems, 2018, 86: 1106-1117. [9] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84c1ee9624570f0917cfd2bf9b3d4b87 PIRBHULAL S, ZHANG H Y, WU W Q, et al. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(12): 2751-2759. [10] 施巍松, 张星洲, 王一帆, 等.边缘计算:现状与展望[J].计算机研究与发展, 2019, 56(1): 69-89. doi: http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201904018 [11] 齐平, 王福成, 王必晴, 等.云计算环境下基于可靠性感知的任务调度算法[J].计算机工程与科学, 2018, 40(11): 23-33. doi: http://d.old.wanfangdata.com.cn/Periodical/jsjgcykx201811003