-
压缩感知理论是建立在矩阵分析、统计概率、优化与运筹学、泛函分析等理论基础上的信息采样与重构的理论[1-2].压缩感知是利用信号的稀疏表示,对信号进行有效压缩采样,通过压缩采样与非线性重构算法完美地重构信号.这一理论为信号恢复带来了新的处理方法,被广泛应用于医学成像、雷达探测、无线通信等诸多领域[3-5].在信号x∈
$\mathbb{R}$ n稀疏或近似稀疏的条件下,压缩感知理论转化为如下欠定线性模型:其中:y∈
$\mathbb{R}$ m为观测信号,A∈$\mathbb{R}$ m×n(m < < n)为测量矩阵,x∈$\mathbb{R}$ n为待重构的信号.实际观测中,加性噪音v时常影响信号y,上述压缩感知模型常转化为下述模型:此外,实际应用中测量矩阵常常受外界测量或其他因素的影响,导致测量矩阵A受扰动矩阵E的影响,即实际测量矩阵
$\mathit{\boldsymbol{\widehat A}} = \mathit{\boldsymbol{A}} + \mathit{\boldsymbol{E}}$ ,其中A称为理想测量矩阵.本文将扰动矩阵E与加性噪音v同时存在的压缩感知问题称之为完全扰动问题[6-7],该问题对应的模型为:从欠定线性模型中求解一个最稀疏的解是压缩感知的核心问题,该问题实际上是一个l0问题.由于l0问题在多项式时间内不能有效求解[8],文献[9]研究了如下l1完全扰动问题:
其中ε′A,K,y为全噪音参数.文献[9]中研究了信号鲁棒重构的限制等容条件(restricted isometrics property,RIP).信号重构条件为压缩感知的发展提供了重要研究意义.
在实际应用中,自然信号的结构丰富多彩.非零元素以块的结构方式出现的信号称为块稀疏信号[10],例如DNA-微阵列[11]、彩色图像处理[12]和源定位[13]等.块稀疏压缩感知实际是单独处理重构信号的每一小块.块稀疏压缩感知使块信号重构与采样的速度更快,且占用存储空间更少.若块稀疏信号用数学模型来表示,则在分块
$\mathscr{I}$ ={d1,…,dN}给定情况下,可以将任意向量x∈$\mathbb{R}$ n描述为如下形式相应地,测量矩阵A∈
$\mathbb{R}$ n×N也可以描述为如下形式其中向量x的第i个子块为x[i],第i块的大小为di.如果在给定分块
$\mathscr{I}$ 下,信号x至多有K个非零块,即$||\mathit{\boldsymbol{x}}|{|_{2, 0}} = \sum\limits_{i = 1}^N I \left({||\mathit{\boldsymbol{x}}[i]|{|_2}} \right) \le K$ ,则称x为块K稀疏信号,其中I(·)表示指示函数[14].实际上,当di=1(i=1,…,N)时,块稀疏信号x为传统稀疏信号.此外,信号x的$\frac{{{\mathit{\boldsymbol{l}}_2}}}{{{\mathit{\boldsymbol{l}}_1}}}$ 范数$||\mathit{\boldsymbol{x}}|{|_{2, 1}} = \sum\limits_{i = 1}^N I ||\mathit{\boldsymbol{x}}[i]|{|_2}$ ;信号x的$\frac{{{\mathit{\boldsymbol{l}}_2}}}{{{\mathit{\boldsymbol{l}}_\infty }}}$ 范数‖x‖2,∞=max{‖x[1]‖2,…,‖x[N]‖2};规定信号x的范数‖x‖2,2=‖x‖2.实际上,在稀疏信号的重构中,测量矩阵要求满足限制性等容条件或相干性等重构条件.特别地,在不引起混淆的情况下,本文记矩阵A的块限制等容常数δBK=δK.为了重构块稀疏信号,文献[15]引入了
$\mathit{\boldsymbol{\widehat A}}$ 的块限制性等容条件(BRIP).设测量矩阵A的块限制性等容常数为δK(K=1,2,…),εA(K)为相对误差上限,且$\frac{{||\mathit{\boldsymbol{E}}||_2^{(K)}}}{{||\mathit{\boldsymbol{A}}||_2^{(K)}}} \le \varepsilon _A^{(K)}$ ,若${\hat \delta _{K, \max }} = \left({1 + {\delta _K}} \right){\left({1 + \varepsilon _\mathit{\boldsymbol{A}}^{(K)}} \right)^2} - 1$ ,对于任意块K稀疏信号x∈$\mathbb{R}$ n,矩阵$\mathit{\boldsymbol{\widehat A}}$ =A+E的块限制性等容常数(BRIC)为满足的最小常数
${\hat \delta _K} \le {\hat \delta _K}, \max $ ,则称矩阵$\mathit{\boldsymbol{\widehat A}}$ 满足块限制性等容条件(BRIP).类似于文献[9],有如下不等式成立:通过研究l1问题,学者获得了大量的充分条件:文献[16]得到了信号重构的RIPδ2k < 0.453 1;文献[17]将RIP重构条件放松为δ2k < 0.465 2;文献[18]将RIP改进为
${\delta _{2k}} < \frac{{\sqrt 2 }}{2}$ .压缩感知的重构理论与重构算法具有重要的应用价值[19-22].
本文借鉴文献[22]延展了一类完全扰动的块压缩感知问题.令噪音上界为l2范数与
$\frac{{{\mathit{\boldsymbol{l}}_2}}}{{{\mathit{\boldsymbol{l}}_\infty }}}$ 范数,其问题具体形式可分别表示为如下形式:其中ε″A,K,y=‖A‖2(1+εA)ε′A,K,y.近年来压缩感知基本是以RIP为理论基础,但是验证RIP理论是一个在多项式时间内不能有效解决的问题,因此,利用RIP理论获得的结论,在实际应用中很难实行.本文针对问题(5),建立了处理块稀疏信号的扰动BOMP算法,根据扰动BOMP算法建立了各项仿真实验,验证了扰动BOMP算法的鲁棒性和稳定性.
A Perturbation Analysis of Block Sparse Signal Reconstruction with Block Orthogonal Matching Pursuit
-
摘要: 给出了测量矩阵受扰动的块正交匹配追踪(BOMP)算法,仿真实验表明:当扰动水平越低、部分扰动元素越少、分块数越小或采样数越多时,重构信号的相对误差越小,即扰动BOMP算法重构性能更好.相比传统的扰动OMP算法,实验结果表明扰动BOMP算法能更加有效地处理块稀疏信号,说明信号结构对于信号恢复至关重要.Abstract: In this paper, the block orthogonal matching pursuit(BOMP) algorithm has been presented when the measurement matrix is perturbed. The simulation results show that when the disturbance level is lower, the number of partial disturbance elements is less, the number of blocks is smaller or the number of samples is more, the relative error of reconstructed signal is smaller, that is, the reconstruction performance of disturbance BOMP algorithm is better. Compared with the traditional perturbation OMP algorithm, the experimental results show that the perturbation BOMP algorithm can deal with the block sparse signal more effectively, which shows that the signal structure is very important for signal recovery.
-
算法1 完全扰动的BOMP算法 输入:观测信号 $\mathit{\boldsymbol{\widehat y}}$ ,实际测量矩阵$\mathit{\boldsymbol{\widehat A}}$ ,块稀疏度K.
1:令标签集Λ0=∅,初始残差向量r0=$\mathit{\boldsymbol{\widehat y}}$ ;
2:令k=1;
3:求矩阵$\mathit{\boldsymbol{\widehat A}}$ 与残差向量rk-1最强相关列
${\lambda _k} = \arg \; \mathop {\max }\limits_{1 \le i \le N} {\left\| {\mathit{\boldsymbol{\widehat A}}*[i]{\mathit{\boldsymbol{r}}^{k - 1}}} \right\|_2}$
Λk=Λk-1∪{λk};
4:估计最小化问题的解
$\mathit{\boldsymbol{\widehat x}}$ [Λk]=arg min‖$\mathit{\boldsymbol{\widehat y}}$ -$\mathit{\boldsymbol{\widehat A}}$ [Λk]x‖2;
5:更新残差rk=$\mathit{\boldsymbol{\widehat y}}$ -$\mathit{\boldsymbol{\widehat A}}$ [Λk]$\mathit{\boldsymbol{\widehat x}}$ [Λk];
6:令k=k+1,重复第3步至第5步,若满足停止条件,则停止迭代.
输出:重构向量$\mathit{\boldsymbol{\widehat x}} = \arg \; \mathop {\min }\limits_{\sup p(x) \subset {\mathit{\Lambda} _K}} \mathit{\boldsymbol{\widehat y}} - \mathit{\boldsymbol{\widehat A}}\mathit{\boldsymbol{x}}{_2}$ ,其中:supp(x)={i|‖x[i]‖2≠0}. -
[1] doi: http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200904014 DONOHO D L. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [2] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f038caf0ee508db10a5b5fd193679bc2 CANDES E J, WAKIN M B. An Introduction to Compressive Sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [3] doi: http://cn.bing.com/academic/profile?id=4254b14be3d1d50d70a912936c555d01&encoded=0&v=paper_preview&mkt=zh-cn LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. [4] doi: http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb201111005 WRIGHT J, YANG A Y, GANESH A, et al. Robust Face Recognition via Sparse Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. [5] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028975811/ DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-Pixel Imaging via Compressive Sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. [6] 刘春燕, 张静, 王建军.冗余字典的扰动压缩数据分离[J].西南大学学报(自然科学版), 2015(9): 150-156. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201509023 [7] 刘春燕, 王建军, 王文东, 等.基于非凸极小化的扰动压缩数据分离[J].电子学报, 2017, 45(1): 37-45. doi: http://d.old.wanfangdata.com.cn/Periodical/dianzixb201701006 [8] doi: http://cn.bing.com/academic/profile?id=da347864b470f1bfe7a342a9e52100e7&encoded=0&v=paper_preview&mkt=zh-cn AMALDI E, KANN V. On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems [J]. Theoretical Computer Science, 1998, 209(1-2): 237-260. [9] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0907.2955 HERMAN M A, STROHMER T. General Deviants: an Analysis of Perturbations in Compressed Sensing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 342-349. [10] doi: http://cn.bing.com/academic/profile?id=d2bb2f7ddddff15c5f18773aea38b3b3&encoded=0&v=paper_preview&mkt=zh-cn LIU C Y, WANG J J, WANG W D, et al. Non-Convex Block-Sparse Compressed Sensing with Redundant Dictionaries [J]. IET Signal Processing, 2017, 11(2): 171-180. [11] doi: http://cn.bing.com/academic/profile?id=29a611656b1e888510d8c3985cdb0e21&encoded=0&v=paper_preview&mkt=zh-cn PARVARESH F, VIKALO H, MISRA S, et al. Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(3): 275-285. [12] doi: http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201508007 MAJUMDAR A, WARD R K. Compressed Sensing of Color Images [J]. Signal Processing, 2010, 90(12): 3122-3127. [13] doi: http://cn.bing.com/academic/profile?id=249429d7bdf37917a75118599ff77884&encoded=0&v=paper_preview&mkt=zh-cn MALIOUTOV D, CETIN M, WILLSKY A S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. [14] 刘春燕, 李川, 邱伟.基于冗余字典的扰动OMP算法研究[J].河南教育学院学报(自然科学版), 2019, 28(4): 12-16, 39. doi: http://d.old.wanfangdata.com.cn/Periodical/hnjyxyxb-zrkxb201904002 [15] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=716f4bbb63bd9c7de72d09f648834e63 WANG J J, ZHANG J, WANG W D, et al. A Perturbation Analysis of Nonconvex Block-Sparse Compressed Sensing [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 29(1-3): 416-426. [16] FOUCART S, LAI M J. Sparsest Solutions of Underdetermined Linear Systems via $\ell $ q-Minimization for 0 <q≤1[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 395-407. [17] FOUCART S. A Note on Guaranteed Sparse Recovery via $\ell $1-minimization [J]. Applied and Computational Harmonic Analysis, 2010, 29(1): 97-103. [18] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=103d8661f2efea68cab809a01af15980 CAI T T, ZHANG A R. Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices [J]. IEEE Transactions on Information Theory, 2014, 60(1): 122-132. [19] 张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004. [20] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1401.0578 CHANG L H, WU J Y. An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715. [21] MO Q. A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit[EB/OL]. (2015-01-08)[2018-05-06]. https://arxiv.org/abs/1501.01708. [22] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001190572 WEN J M, ZHOU Z C, LIU Z L, et al. Sharp Sufficient Conditions for Stable Recovery of Block Sparse Signals by Block Orthogonal Matching Pursuit [J]. Applied and Computational Harmonic Analysis, 2019, 47(3): 948-974.