-
在欧式空间上,经典的Picone恒等式为
其中u≥0,v>0,同时u,v是可微函数[1-3].文献[4]将(1)式推广到p-Laplace算子上,接着,文献[5]又将(1)式作了进一步的推广,得到了较为一般的Picone恒等式
最近,文献[6]将(2)式推广到p-Laplace算子上,给出了更加广义的Picone恒等式
关于Baouendi-Grushi p-退化椭圆算子,文献[7]给出了类似(3)式的结果.本文将(3)式推广到Heisenberg型群的p-退化椭圆算子上,得到了一类广义Picone恒等式,其结果包含了(3)式的情形.作为应用,在第三部分,利用本文得到的广义Picone恒等式证明了Hardy不等式、Sturmiam比较原理、主特征值的单调性结论和Liouville型定理,避免了正则性的讨论.最后,讨论了具有奇异项的拟线性方程的弱解问题.
Generalized Picone's Identity and Its Applications for the Heisenberg-Type Group
-
摘要: 利用Heisenberg型群上p-退化椭圆算子的广义Picone恒等式给出了Hardy不等式、Sturmiam比较原理、Liouville型定理和主特征值的单调性结论.讨论了具有奇异项的拟线性方程的弱解问题.
-
关键词:
- Heisenberg型群 /
- 广义Picone恒等式 /
- Hardy不等式 /
- Sturmiam比较原理 /
- Liouville型定理
Abstract: This paper establishes a generalized version of the Picone's identity of p-degenerated elliptic operators for the Heisenberg-type group. As applications, Hardy-type inequality, Sturmian comparison principle, a Liouville-type theorem and the strict monotonicity of the principal eigenvalue are given. The weak solution of the quasi-linear system with singular nonlinearity is also studied. -
[1] ALLEGRETTO W. Positive Solutions and Spectral Properties of Weakly Coupled Elliptic Systems[J]. J Math Anal Appl, 1986, 120(2):723-729. doi: 10.1016/0022-247X(86)90191-5 [2] ALLEGRETTO W. Sturmian Theorems for Second Order Systems[J]. Proc Amer Math Soc, 1985, 94(2):291-296. doi: 10.1090/S0002-9939-1985-0784181-8 [3] ALLEGRETTO W. On the Principal Eigenvalues of Indefinite Elliptic Problems[J]. Math Zeitschrift, 1987, 195(1):29-35. doi: 10.1007/BF01161596 [4] ALLEGRETTO W, HUANG Y X. A Picone's Identity for the p-Laplacian and Application[J]. Nonlinear Analysis, 1998, 32(7):819-830. doi: 10.1016/S0362-546X(97)00530-0 [5] TYAGI J. A Nonlinear Picone's Identity and Its Applications[J]. Applied Mathematics Letters, 2013, 26(6):624-626. doi: 10.1016/j.aml.2012.12.020 [6] BAL K. Generalized Picone's Indentity and Its Applications[J]. Electronic J Diff Equations, 2013, 2013(243):1-6. [7] 王胜军, 韩亚洲. Baouendi-Grushi p-退化椭圆算子的广义Picone恒等式及其应用[J].西南师范大学学报(自然科学版), 2018, 43(3):1-6. doi: http://www.cnki.com.cn/Article/CJFDTotal-XNZK201803001.htm [8] KAPLAN A. Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition of Quadratic Forms[J]. Trans Am Math Soc, 1980, 258(1):147-153. doi: 10.1090/S0002-9947-1980-0554324-X [9] GAROFALO N, VASSILEV D. Regularity Near the Characteristic Set in the Non-Linear Dirichlet Problem and Conformal Geometry of Sub-Laplacians on Carnot Groups[J]. Math Ann, 2000, 318(3):453-516. doi: 10.1007/s002080000127 [10] GAROFALO N, VASSILEV D. Symmetry Properties of Positive Entire Solutions of Yamabe-Type Equations on Groups of Heisenberg Type[J]. Duke Math J, 2001, 106(3):411-448. doi: 10.1215/S0012-7094-01-10631-5 [11] GAROFALO N. Unique Continuation for a Class of Elliptic Operators which Degenerate on a Mannifold of Arbitrary Codimension[J]. J Differential Equations, 1993, 104(1):117-146. doi: 10.1006/jdeq.1993.1065 [12] GAROFALO N, NHIE D M. Isoperimetric and Sobolev Inequalities for Carnot-Caratheodory Spaces and the Existence of Minimum Surfaces[J]. Comm Pure Appl Math, 1996, XLIX:1081-1144. [13] DOU J B. Picone Inequlities for p-Sub-Laplacian on Heisenberg Group and Its Applications[J]. Comm Contem Math, 2010, 12(2):295-307. doi: 10.1142/S0219199710003804 [14] 韩军强, 钮鹏程, 韩亚洲. Heisenberg型群上的几类Hardy型不等式[J].系统科学与教学, 2005, 25(5):588-598. doi: http://d.old.wanfangdata.com.cn/Periodical/xtkxysx-zw200505009 [15] 原子霞, 钮鹏程. H型群上p-次Laplace算子的Hopf型引理和强极大值原理[J].数学研究与评论, 2007, 27(3):605-612. doi: http://d.old.wanfangdata.com.cn/Periodical/sxyjypl200703020 [16] 廖家锋, 李红英, 段誉.一类奇异p-Laplacian方程正解的唯一性[J].西南大学学报(自然科学版), 2016, 38(6):45-49. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201606008&flag=1
计量
- 文章访问数: 402
- HTML全文浏览数: 402
- PDF下载数: 24
- 施引文献: 0