Dynamics Analysis of a Vector-Borne Disease Model with Saturation Incidence Rate
-
摘要: 考虑虫媒传染病具有潜伏期的特征,研究了一类具有饱和发生率的时滞传染病模型的动力学行为,确定了疾病是否流行的阈值R0.当R0 < 1时,无病平衡点全局渐近稳定,疾病将最终灭绝;当R0>1时,唯一地方病平衡点条件稳定,系统会产生Hopf分支.Abstract: Taking into consideration the fact that insect-borne infectious diseases have a latent period, we study in this paper the dynamic behavior for a delayed vector-borne disease model with saturation infection rate. The threshold value R0, which determines whether the disease dies out, is found. If R0 < 1, the disease-free equilibrium is globally asymptotically stable and the disease always dies out. If R0>1, a unique endemic equilibrium is conditionally stable. The conditions for Hopf bifurcation to occur are derived.
-
Key words:
- vector-borne disease model /
- saturation incidence rate /
- time delay /
- stability /
- Hopf bifurcation .
-
[1] 秦晓萍, 王文军, 秦红丽.主要虫媒传染病的流行现状[J].畜牧兽医科技信息, 2003(7):22-25. doi: http://d.old.wanfangdata.com.cn/Periodical/yfsyxjz200307007 [2] 国家质量监督检验检疫总局.多国登革热疫情[EB/OL]. (2017-4-3)[2017-11-20]. http://www.aqsiq.gov.cn/xxgk13386/zxxxgk/201804/t20180403_515212.htm. [3] 方美玉, 林立辉, 刘建伟.我国虫媒传染病的流行病学及其预防[C]//第九届全军流行病学、第八届全军防生物危害医学专业学术会议论文集.北京: 军事医学科学出版社, 2007: 315-320. [4] ROSS R. The Prevention of Malaria[M]. London:Marray, 1911. [5] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3016929 CRUZ-PAEHEEO G, ESTEVA L, MONTAFIO-HIROSE J A, et al. Modeling the Dynamics of West Nile Virus[J]. Bulletin of Mathematical Biology, 2005, 67(6):1157-1172. [6] BOWMAN C, GUMEL A B, VAN DEN DRISSCHE P, et al. A Mathematical Modelfor Assessing Control Strategies Against West Nile Virus[J]. Bulletin of Mathematical Biology, 2005, 67(5):1107-1133. [7] CAI Li-ming, LI Xue-zhi, LI Zhao-qiang. Dynamical Behavior of an Epidemic Modelfor a Vector-Borne Disease with Direct Transmission[J]. Chaos Solitons Fractals, 2013, 46(1):54-64. [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399cb5a4d126e608bb128ff6c152b783 CAI Li-ming, LI Xue-zhi. Global Analysis of a Vector-Host Epidemic Model with Nonlinear Incidences[J]. Applied Mathematics and Computation, 2010, 217(7):3531-3541. [9] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1216-RMJ-1979-9-1-31/ COOKE K. Stability Analysis for a Vector Disease Model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1):31-42. [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f8b334a8bb5762999c5dc73b91831e5 WEI Hui-ming, LI Xue-zhi, MARTEHEVA M. An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay[J]. Journal of Mathematical Analysis and Applications, 2008, 342(2):895-908. [11] CAPSSO V, SERIO G. A Generalization of the Kermack-Mc Kendrick Deterministic Epidemic Model[J]. Mathematical Biosciences, 1978, 42(1):43-61. [12] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_eae3f20a69cecfcd902cf3a322c05154 SONG Yong-li, YUAN San-ling. Bifurcation Analysis in a Predator-Prey System with Time Delay[J]. Nonlinear Analysis Real World Applications, 2006, 7(2):265-284. [13] KUANG Yang. Delay Differential Equations with Applications in Population Dynamics[M]. Salt Lake:American Academic Press, 1993.
计量
- 文章访问数: 753
- HTML全文浏览数: 753
- PDF下载数: 23
- 施引文献: 0