留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类带交叉扩散项的捕食食饵模型全局分歧研究

上一篇

下一篇

宋倩倩, 李艳玲. 一类带交叉扩散项的捕食食饵模型全局分歧研究[J]. 西南大学学报(自然科学版), 2021, 43(1): 106-115. doi: 10.13718/j.cnki.xdzk.2021.01.013
引用本文: 宋倩倩, 李艳玲. 一类带交叉扩散项的捕食食饵模型全局分歧研究[J]. 西南大学学报(自然科学版), 2021, 43(1): 106-115. doi: 10.13718/j.cnki.xdzk.2021.01.013
SONG Qian-qian, LI Yan-ling. Research of Global Bifurcation of a Predator-Prey Model with Cross-Diffusion[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 106-115. doi: 10.13718/j.cnki.xdzk.2021.01.013
Citation: SONG Qian-qian, LI Yan-ling. Research of Global Bifurcation of a Predator-Prey Model with Cross-Diffusion[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 106-115. doi: 10.13718/j.cnki.xdzk.2021.01.013

一类带交叉扩散项的捕食食饵模型全局分歧研究

  • 基金项目: 国家自然科学基金项目(61672021)
详细信息
    作者简介:

    宋倩倩,硕士研究生,主要从事反应扩散方程与数学生物学的研究 .

    通讯作者: 李艳玲,教授
  • 中图分类号: O175.26

Research of Global Bifurcation of a Predator-Prey Model with Cross-Diffusion

  • 摘要: 研究了一类具有交叉扩散项的捕食-食饵模型在齐次Dirichlet边界条件下分歧正解的存在性.首先利用极大值原理得到正解的先验估计;接着,借助Crandall-Rabinowitz分歧理论,得到局部分歧正解的存在性;再将局部分歧延拓为全局分歧,从而给出捕食者与食饵在一定条件下可以共存的条件;最后,利用谱分析的方法得到了关于分歧解稳定性的一个条件.
  • 加载中
  • [1] 杨文彬, 李艳玲.一类比率依赖的Holling-Leslie捕食-食饵模型的全局分歧[J].计算机工程与应用, 2012, 48(17): 58-62.
    [2] SHI H B, LI Y. Global Asymptotic Stability of a Diffusive Predator-Prey Model with Ratio-Dependent Functional Response [J]. Applied Mathematics and Computation, 2015, 250: 71-77. doi: 10.1016/j.amc.2014.10.116
    [3] AZIZ-ALAOUI M A, DAHER OKIYE M. Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type Ⅱ Schemes [J]. Applied Mathematics Letters, 2003, 16(7): 1069-1075. doi: 10.1016/S0893-9659(03)90096-6
    [4] TRIPATHI J P, MEGHWANI S S, THAKUR M, et al. A Modified Leslie-Gower Predator-Prey Interaction Model and Parameter Identifiability [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 54: 331-346. doi: 10.1016/j.cnsns.2017.06.005
    [5] FLORES J D, GONZÁLEZ-OLIVARES E. A Modified Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response and Alternative Food for the Predator [J]. Mathematical Methods in the Applied Sciences, 2017, 40(7): 2313-2328. doi: 10.1002/mma.4172
    [6] PENG R, WANG M X, YANG G Y. Stationary Patterns of the Holling-Tanner Prey-Predator Model with Diffusion and Cross-Diffusion [J]. Applied Mathematics and Computation, 2008, 196(2): 570-577. doi: 10.1016/j.amc.2007.06.019
    [7] 郭改慧, 李兵方, 岳宗敏.带交叉扩散的Ivlev捕食-食饵模型的分歧正解[J].西南大学学报(自然科学版), 2013(1): 74-78. doi: http://xbgjxt.swu.edu.cn/article/id/jsuns201301013
    [8] KUTO K, YAMADA Y. Coexistence Problem for a Prey-Predator Model with Density-Dependent Diffusion [J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(12): e2223-e2232. DOI:10.1016/j.na.2009.05.014.
    [9] LI S B, LIU S Y, WU J H, et al. Positive Solutions for Lotka-Volterra Competition System with Large Cross-Diffusion in a Spatially Heterogeneous Environment [J]. Nonlinear Analysis: Real World Applications, 2017, 36: 1-19. doi: 10.1016/j.nonrwa.2016.12.004
    [10] STEPHEN CANTRELL R, CAO X R, LAM K Y, et al. A PDE Model of Intraguild Predation with Cross-Diffusion [J]. Discrete & Continuous Dynamical Systems-B, 2017, 22(10): 3653-3661.
    [11] 黄继才.具有Holling Type-Ⅳ功能反应函数的捕食与被捕食系统的定性分析[D].武汉: 华中师范大学, 2002.
    [12] WU J H, WEI G S. Coexistence States for Cooperative Model wth Diffusion [J]. Computers & Mathematics with Applications, 2002, 43(10): 1277-1290.
    [13] 叶其孝, 李正元.反应扩散方程引论[M].北京:科学出版社, 1990: 40-56.
    [14] JUN Z, KIM C G. Positive Solutions for a Lotka-Volterra Prey-Predator Model with Cross-Diffusion of Fractional Type [J]. Results in Mathematics, 2014, 65(3-4): 293-320. doi: 10.1007/s00025-013-0346-2
  • 加载中
计量
  • 文章访问数:  698
  • HTML全文浏览数:  698
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-21
  • 刊出日期:  2021-01-20

一类带交叉扩散项的捕食食饵模型全局分歧研究

    通讯作者: 李艳玲,教授
    作者简介: 宋倩倩,硕士研究生,主要从事反应扩散方程与数学生物学的研究
  • 陕西师范大学 数学与信息科学学院,西安 710119
基金项目:  国家自然科学基金项目(61672021)

摘要: 研究了一类具有交叉扩散项的捕食-食饵模型在齐次Dirichlet边界条件下分歧正解的存在性.首先利用极大值原理得到正解的先验估计;接着,借助Crandall-Rabinowitz分歧理论,得到局部分歧正解的存在性;再将局部分歧延拓为全局分歧,从而给出捕食者与食饵在一定条件下可以共存的条件;最后,利用谱分析的方法得到了关于分歧解稳定性的一个条件.

English Abstract

  • 近年来,随着种群生态学的发展,捕食系统已经成为数学和生物学领域的一个重要课题,据此研究者已经建立了包括Lotka-Volterra模型、比率型、Holling-Leslie模型等在内的多种捕食食饵模型.文献[1]给出如下带有扩散项的Holling-Leslie捕食食饵模型

    文献[1]主要研究该系统周期轨道的存在性和非常数正解的全局稳定性.文献[2]主要研究系统(1)中b=1的情况下正解存在性与其分歧解的局部和全局稳定性.

    首先,对于系统(1)考虑到食饵u严重匮乏引起捕食其他种类,以及物种在空间上分布不均匀的情况,文献[3]基于实验得到了优化的Leslie-Gower型反应函数$\frac{a_{1} y}{k_{1}+x} $,其中xy分别表示食饵和捕食者的种群密度,a1表示食饵最大消耗率,k1表示环境对食饵的保护程度,相关的修正的动力学行为模型也取得了很多研究成果[3-5].

    其次,种群间的相互影响在种群扩散中起着非常重要的作用[6-12].其中:文献[6]解释了一类具有交叉扩散项的生物意义并讨论捕食食饵模型非常数正解存在性;文献[7-8]研究了一类带交叉扩散项的的局部分歧正解情况;文献[9]研究了空间不均匀环境下带交叉扩散项的Lotka-Volterra竞争模型正解问题.然而目前在齐次Dirichlet边界条件下研究带有交叉扩散项和优化的Leslie-Gower型反应函数系统的研究工作所见不多.故本文受文献[4, 7-8]的启发在文献[1]的基础上研究如下带有修正的Leslie-Gower模型和交叉扩散项的竞争模型

    其中:Δ为Lapalce算子;Ω$ {\mathbb{R}^n}$中具有光滑边界的有界开区域;uv分别表示食饵和捕食者的种群密度;αβabmk都是正常数,αβ代表交叉扩散系数,ab分别表示食饵种群和捕食者种群的内禀增长率,齐次的Dirichlet边界条件意味着两个物种的居住区域Ω被一个敌对的环境所包围.

    在食物严重缺乏的情况下区别于模型(1)的反应函数,模型(2)中优化的Leslie-Gower型反应函数表明,即使食饵数量急剧减少也不会对捕食者数量的增长产生较大的影响.此外,模型(2)中还增加了二者之间的交叉扩散项,这使模型更具有实际的生物意义.

  • 考虑如下方程的特征值问题,设$ q(x) \in C(\bar \varOmega ), {\lambda _1}(q(x))$是下面边值问题的主特征值

    λ1(q(x))关于q(x)递增.记λ1(0)=λ1,对应的主特征函数记作ψ1 (ψ1>0,xΩ).

    考虑非线性边值问题

    aλ1,则u=0是(3)式的唯一非负解;若aλ1,则(3)式有唯一正解,记为θaθa关于a单调递增.

    同理,考虑非线性边值问题

    bλ1,则v=0是(4)式的唯一非负解;若bλ1,则(4)式有唯一正解,记为θbθb关于b单调递增.以上结论可参考文献[13].

    由于

    因此在$ \mathbb{R}_ + ^2 = \{ u \ge 0, v \ge 0\} $上,映射(uv)→(UV)是可逆且连续的,(uv)是(UV)的函数,且(uv)和(UV)之间存在一一对应关系,则系统(1)的平衡态方程等价于如下椭圆系统

    显然方程(5)存在平凡解(0,0),此外,当aλ1时方程(5)存在平凡解(θa,0);当bλ1时方程(5)存在平凡解(0,b).令${C_0}(\bar \varOmega ) = \left\{ {U \in {C_0}(\bar \varOmega ):U = 0, x \in \partial \varOmega } \right\} $,并定义算子$ {L_a}w = - \Delta w - \left( {a - 2{\theta _a}} \right)w$$w \in {C^2}(\varOmega ) \cap {C_0}(\bar \varOmega ) $.易知,算子La的所有特征值都是正的,这说明La可逆.

    引理1  若aλ1或者bλ1,则方程(5)没有正解.

      假设方程(5)有正解(UV),由方程(5)关于U的方程可得

    两边同乘U,在Ω上积分,结合Green公式得

    由Poincaré不等式知${\lambda _1}\left\| U \right\|_2^2 < \left\| {\nabla U} \right\|_2^2 $.从而aλ1,同理可得bλ1.因此当aλ1bλ1时,方程(5)没有正解.

    引理2  若abλ1,(UV)是方程(5)的任一正解,则对于任意的xΩ,有

      设存在${{x_0} \in \bar \varOmega } $,使得

    由于

    从而有

    进而有v(x0)<au(x0)<a2,因此有

    同理可得

    从而定理得证.

  • 由于分歧正解的存在性与特征值问题密切相关,因此在讨论分歧正解的存在性之前给出两个与分歧正解存在性相关的特征值引理.

    引理3[7]  设bλ1,则存在唯一的a=a*(b)∈(λ1,+∞),满足${\lambda _1}\left( {\frac{{ - b}}{{1 + \beta {\theta _a}}}} \right) = 0 $,且a=a*(b)关于b严格单调递增.

    引理4[7]  设bλ1,则存在唯一的a=a*(b)∈(λ1,+∞),满足${\lambda _1}\left( {\frac{{ - a}}{{1 + \alpha k{\theta _b}}}} \right) = 0 $,且a=a*(b)关于b严格单调递增.

    $C_0^1(\bar \varOmega ) = \left\{ {U \in {C^1}(\bar \varOmega ):U\mid \partial \varOmega = 0} \right\} $.定义$ C_0^1(\bar \varOmega )$中的范数为通常的Banach空间${{C^1}(\bar \varOmega )}$中的范数.令$X = C_0^1(\bar \varOmega ) \times C_0^1(\bar \varOmega ) $.则X是Banach空间.固定bλ1,以a为分歧参数,讨论系统(5)发自半平凡解曲线$\left\{ {\left( {a;{U_*}, {v_*}} \right) = \left( {a;{\theta _a}, 0} \right), a > {\lambda _1}} \right\} $$\left\{ {\left( {a;{U^*}, {v^*}} \right) = \left( {a;0, k{\theta _b}} \right), b > {\lambda _1}} \right\} $上的分歧正解.

    其中(uv)是(UV)的函数,将(3)式在(UV)=(θa,0)处Taylor展开得

    其中(6)式中偏导数均为(θa,0)处的导数值,Qi(a; U-θaV)满足Qi(a; U-θaV)(0,0)=0,i=1,2,且有

    定理1  设aλ1bλ1,则$\left( {{a_*};{\theta _a}, 0} \right) \in {\mathbb{R} ^ + } \times X$为系统(5)的分歧点,且在(a*θa*,0)的邻域内存在正解,即

    其中,ϕC01(Ω),σ>0充分小,(a(s);ϕ1(s),ψ1(s))是C1连续函数,且满足a(0)=a*ϕ1(0)=0,ψ1(0)=0,$ \int_\varOmega {{\psi _1}} {\psi _ * } = 0$.且

      在(6)式中,令$\bar U = U - {\theta _a} $,则有

    显然G(a;0,0)=0.记G(aUV)关于(UV)在(a*;0,0)处的Fréchet导数为L(a*;0,0).经计算L(a*;0,0)(ϕψ)=0等价于

    如果ψ=0,则由算子La*可逆知ϕ=0,则ϕ不恒为0.又${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0 $,故有

    因此算子L(a*;0,0)的核空间N(L(a*;0,0))=span{(ϕ*ψ*)T}.令L*(a*;0,0)为L(a*;0,0)的自伴算子,经计算L*(a*;0,0)(ϕψ)=0等价于

    显然ϕ≡0.由$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0$ψ=ψ*.所以得N(L(a*;0,0))=span{0,ψ*}.由Fredholm选择定理知

    因此得

    ${L_1}\left( {{a_*};0, 0} \right) = D_{a(\bar U, v)}^2G\left( {{a_*};0, 0} \right) $.接着用反证法说明L1(a*;0,0)(ϕ*ψ*)∉R(L(a*;0,0)).假设存在(w0x0)∈X,使得L1(a*;0,0)(ϕ*ψ*)=L(a*;0,0)(w0x0).经过计算

    那么有

    两边同时乘ψ*,然后在Ω上积分,结合Green公式得

    由于

    所以有

    由于θa关于a严格单调递增,则(11)式左边大于0.从而矛盾,即L1(a*;0,0)(ϕ*ψ*)∉R(L(a*;0,0)).

    至此,由Grandall-Rabinowitz简单特征值局部分歧定理[12]知,存在充分小的σ>0和C1连续曲线$\left( {a(s);{\phi _1}(s), {\psi _1}(s)} \right):( - \sigma , \sigma ) \to \mathbb{R} \times X $,使得$a(0) = {a_*}, {\phi _1}(0) = {\psi _1}(0) = 0, {\phi _1}(s), {\psi _1}(s) \in \mathbb{Z} $,其中$X = \mathbb{Z} \oplus N\left( {L\left( {{a_*};0, 0} \right)} \right), (a(s);\bar U(x) $v(x))=(a(s);s(ϕ*+ϕ1(s)),s(ψ*+ψ1(s))),满足$G(a(s);\bar U, V) = 0 $.因此$(a(s);\bar U(s), V(s)), (|s| < \sigma ) $是方程(5)的分歧解.其中$\bar U(s) = {\theta _a}, + s\left( {{\phi _*} + {\phi _1}(s)} \right) $V(s)=s(ψ*+ψ1(s)).

    同理可得发自半平凡解分支(a*;0,b)的局部分歧正解.

    定理2  设abλ1,则$\left( {{a_*};0, k{\theta _b}} \right) \in {\mathbb{R} ^ + } \times X $为系统(5)的分歧点,且在(a*;0,b)的邻域内存在正解,即

    其中:${\psi ^*} \in {C_0}^1(\bar \varOmega ), \sigma > 0 $充分小,(a(s);ϕ2(s),ψ2(s))是C1连续函数,满足a(0)=a*ϕ2(0)=0,ψ2(0)=0,$\int_\varOmega {{\phi _2}} {\phi ^*} = 0 $,且

  • 本节主要参照文献[11-12]中的方法,将局部分支延拓为整体分支.这里取$ {P_1} = \left\{ {u \in C_0^1(\bar \varOmega ):u(x) > 0, x \in \varOmega , \frac{{\partial u}}{{\partial n}} < 0, x \in \partial \varOmega } \right\}$$P = \left\{ {(a, U, V) \in {\mathbb{R}^ + } \times X:U, V \in {P_1}} \right\} $.

    定理3  若abλ1,则由定理1给出的分歧正解Γ*在正锥P内可延拓为全局分歧,并且存在常数a充分大,使得当aa时,全局分歧曲线随参数a延伸到无穷.

      (7)式等价于

    定义算子$K:{\mathbb{R} ^ + } \times X \to X $

    $K(a;\bar U, V) $X的紧可微算子.

    ${K^\prime }(a) = {D_{(\bar U, V)}}K(a;0, 0) $.设μ≥1是K(a)的一个特征值,相应的特征值函数设为(ξη)且不恒为0,经计算(ξη)满足

    η≡0,由算子(-μΔ-a+2θa)可逆知ξ≡0,矛盾,则η≠0.令

    则一定存在某个i(i=1,2,…),使得λi(μha)=0.对任意iλi(μha)关于μ≥1和aλ1均严格单调递增,即λ1(μha)<λ2(μha)≤λ3(μha)≤…→∞.特别地,λ1(μha)=0.另外,若存在某个i(i=1,2,…),使得λi(μha)=0,则μ≥1一定为K′(a)的特征值.换言之,当且仅当有i存在使λi(μha)=0时,μ≥1是K′(a)的一个特征值.

    aa*,∀μ≥1,i≥0有λi(μha*)≥λ2(μha*)>λ1(1,ha*).因此,K′(a)没有大于或等于1的特征值.此时有i(K(a;·),0)=1.

    设存在充分小的γ使得a*-γaa*λ2(μa*-γ)≥λ1(μha*),则对于∀μ≥1,i≥2有λi(μha)≥λ2(μha)>λ2(μha*-γ)≥λ1(μha*)>λ1(1,ha*)=0.因λ1(1,ha)<λ1(1,ha*)=0,$\mathop {\lim }\limits_{\mu \to \infty } {\lambda _1}\left( {\mu , {h_{{a_*}}}} \right) = + \infty $λ1(μha*)关于μ单调递增,则存在唯一的μ1>1,使λ1(μha*)=0,从而有

    其中$\bar \eta $>0为下列方程特征值问题的主特征函数

    其中

    下面证μ1的代数重数为1.只需证

    若不然,为了不失一般性,设$ (\bar \xi , \bar \eta ) \in R\left( {{\mu _1}I - {K^\prime }(a)} \right)$,则存在(ξη)∈X,使得

    在(16)式的两端同乘以$\bar \eta $,利用Green公式在Ω上积分得

    另外,结合(16)式可得

    ha<0矛盾.故μ1的代数重数为1.因此当a*-γaa*i(K(a;·),0)=-1.

    由全局分歧定理知,在${\mathbb{R} ^ + } \times P $内存在从(a*θa,0)出发的连通分支C0满足G(aξη)=0且在(a*θa,0)附近. G(aUV)=0的所有零点都在定理1给出的那条分支曲线上.记

    C为系统(5)由(a*θa*,0)的解曲线,在(a*θa*,0)的小邻域内有CP,而且分支C-{(a*θa*,0)}满足下列条件之一:

    1) C连接了分歧点(a*θa*,0)和$\left( {\tilde a;{\theta _{\tilde a}}, 0} \right) $,其中$I - {K^\prime }(\tilde a){\rm{ }} $不可逆且${a_*} \ne \tilde a $

    2) C${\mathbb{R} ^ + } \times P $内由(a*θa*,0)延伸到∞.

    下面证明C-{(a*θa*,0)}⊆P.假设$C - \left\{ {\left( {{a_*};{\theta _{{a_*}}} , 0} \right)} \right\} \not\subseteq P $,则存在点$\{ (\tilde a, {\rm{ }}\tilde U, \tilde V)\} \in C - \left\{ {\left( {{a_*};{\theta _{{a_*}}}, 0} \right)} \right\} \cap \partial P $和序列{anUnVn}⊆CPUn>0,Vn>0,使得n→∞时,$ \left( {{a_n}, {U_n}, {V_n}} \right) \to (\tilde a, {\rm{ }}\tilde U, \tilde V)$.由于(unvn)和(UnVn)之间存在一一对应的关系知(unvn)→(θa,0).因此$\tilde U \in \partial {P_1} $$ \tilde V \in \partial {P_1}$.

    假设$\tilde U \in \partial {P_1} $,那么$\tilde U \ge 0, x \in \bar \varOmega $.则要么存在x0Ω,使得$\tilde U\left( {{x_0}} \right) = 0 $;要么存在${x_0} \in \partial \varOmega $,使得${\left. {\frac{{\partial \tilde U}}{{\partial n}}} \right|_{{x_0}}} = 0 $.显然由最大值原理知$\tilde U \equiv 0 $.同理,假设$\tilde V \in \partial {P_1} $,则$\tilde V \equiv 0 $.因此$ (\tilde U, \tilde V)$有下面3种可能:

    1) $(\tilde U, \tilde V) \equiv \left( {0, 0} \right) $

    2) $(\tilde U, \tilde V) \equiv \left( {{\theta _a}, 0} \right) $

    3) $(\tilde U, \tilde V) \equiv \left( {0, k{\theta _b}} \right) $.

    首先利用反证法证明1)不成立.假设存在序列${\alpha _n} \to \infty , {a_n} \to \tilde a, \left( {{U_n}, {V_n}} \right) $在[L(Ω)]2中收敛到(0,b),由于(unvn)和(UnVn)之间存在一一对应的关系知(unvn)→(0,b).令$ {{\tilde U}_n} = \frac{{{U_n}}}{{{{\left\| {{U_n}} \right\|}_\infty }}}$,则${{\tilde U}_n} $满足下面方程

    LP估计和Sobolev嵌入定理知$\vec{U}_{n} \rightarrow u_{n} $(在C1范数意义下),且满足

    所以$\tilde U = 0 $${\left\| {{U_n}} \right\|_\infty } = 1 $矛盾.

    接着证明2)不成立,假设$(\tilde U, \tilde V) \equiv \left( {{\theta _a}, 0} \right) $,则当n→∞时$\left( {{a_n};{U_n}, {V_n}} \right) \to \left( {\tilde a;{\theta _a}, 0} \right) $.令${{\tilde V}_n} = \frac{{{V_n}}}{{{{\left\| {{V_n}} \right\|}_\infty }}} $,则${{\tilde V}_n} $满足下面方程

    由极大值原理知${\tilde V} $>0,因此${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0 $$\tilde a \ne {a_ * } $矛盾.

    通过以上讨论知3)成立,即C-{(a*θa*,0)}⊆P.因为${\left\| {{U_n}} \right\|_\infty }, {\left\| {{V_n}} \right\|_\infty } $有界.则全局分歧曲线只能沿参数a延伸到∞.

    注1  注意到$u(x) = \frac{U}{{1 + \alpha v}} < U, v(x) = \frac{V}{{1 + \beta u}} < V $,由引理2知uv有界.

    注2  注意到(uv)≥(0,0)和(UV)≥(0,0)之间存在一一对应的关系,由定理1和定理2知模型(5)存在分歧正解.

  • 本节参考文献[14]的方法主要分析了系统(5)的平凡解和半平凡解的稳定性.显然系统(5)的平凡解是(0,0),半平凡解是(θa,0)(aλ1),(0,b)(bλ1).

    定理4  1)若aλ1bλ1,则平凡解(0,0)是渐近稳定的;相反地,若aλ1或者bλ1,则平凡解(0,0)是不稳定的.

    2) 假设aλ1.若$\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right)>0 $,则(θa,0)是渐近稳定的;若$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$,则(θa,0)是不稳定的.

    3) 假设bλ1.若$\lambda_{1}\left(-\frac{a}{1+\alpha k \theta_{b}}\right)>0 $,则(0,b)是渐近稳定的;若${\lambda _1}\left( { - \frac{a}{{1 + \alpha k{\theta _b}}}} \right) < 0 $,则(0,b)是不稳定的.

      因为3种情况的证明过程相似,所以在此只证定理4中的情况(2).由线性化原理知,(θa,0)的稳定性由下面特征值问题决定

    由于(18)中的方程不是完全对称的,需要考虑下面两个特征值问题

    由文献[14]知(18)式的特征值是(19)式和(20)式的组合.分别记(19)式和(20)式的特征值为λ*λ*,则有

    为了研究λ*,因V=(1+βu)v,则由主特征值的变分原理得

    则有${\lambda _*} > {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) $,此时$\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right)>0 ; \lambda_{*}<\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right) $,此时$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$.

    ${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) > 0 $,则系统(5)所有的特征值都是正的,因此(θa,0)是渐近稳定的;另一方面,若${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0 $,则系统(5)有一个负的特征值,这说明(θa,0)是不稳定的.

参考文献 (14)

目录

/

返回文章
返回