-
近年来,随着种群生态学的发展,捕食系统已经成为数学和生物学领域的一个重要课题,据此研究者已经建立了包括Lotka-Volterra模型、比率型、Holling-Leslie模型等在内的多种捕食食饵模型.文献[1]给出如下带有扩散项的Holling-Leslie捕食食饵模型
文献[1]主要研究该系统周期轨道的存在性和非常数正解的全局稳定性.文献[2]主要研究系统(1)中b=1的情况下正解存在性与其分歧解的局部和全局稳定性.
首先,对于系统(1)考虑到食饵u严重匮乏引起捕食其他种类,以及物种在空间上分布不均匀的情况,文献[3]基于实验得到了优化的Leslie-Gower型反应函数
$\frac{a_{1} y}{k_{1}+x} $ ,其中x,y分别表示食饵和捕食者的种群密度,a1表示食饵最大消耗率,k1表示环境对食饵的保护程度,相关的修正的动力学行为模型也取得了很多研究成果[3-5].其次,种群间的相互影响在种群扩散中起着非常重要的作用[6-12].其中:文献[6]解释了一类具有交叉扩散项的生物意义并讨论捕食食饵模型非常数正解存在性;文献[7-8]研究了一类带交叉扩散项的的局部分歧正解情况;文献[9]研究了空间不均匀环境下带交叉扩散项的Lotka-Volterra竞争模型正解问题.然而目前在齐次Dirichlet边界条件下研究带有交叉扩散项和优化的Leslie-Gower型反应函数系统的研究工作所见不多.故本文受文献[4, 7-8]的启发在文献[1]的基础上研究如下带有修正的Leslie-Gower模型和交叉扩散项的竞争模型
其中:Δ为Lapalce算子;Ω为
$ {\mathbb{R}^n}$ 中具有光滑边界的有界开区域;u,v分别表示食饵和捕食者的种群密度;α,β,a,b,m,k都是正常数,α和β代表交叉扩散系数,a和b分别表示食饵种群和捕食者种群的内禀增长率,齐次的Dirichlet边界条件意味着两个物种的居住区域Ω被一个敌对的环境所包围.在食物严重缺乏的情况下区别于模型(1)的反应函数,模型(2)中优化的Leslie-Gower型反应函数表明,即使食饵数量急剧减少也不会对捕食者数量的增长产生较大的影响.此外,模型(2)中还增加了二者之间的交叉扩散项,这使模型更具有实际的生物意义.
全文HTML
-
考虑如下方程的特征值问题,设
$ q(x) \in C(\bar \varOmega ), {\lambda _1}(q(x))$ 是下面边值问题的主特征值λ1(q(x))关于q(x)递增.记λ1(0)=λ1,对应的主特征函数记作ψ1 (ψ1>0,x∈Ω).
考虑非线性边值问题
若a<λ1,则u=0是(3)式的唯一非负解;若a>λ1,则(3)式有唯一正解,记为θa,θa关于a单调递增.
同理,考虑非线性边值问题
若b<λ1,则v=0是(4)式的唯一非负解;若b>λ1,则(4)式有唯一正解,记为θb,θb关于b单调递增.以上结论可参考文献[13].
令
由于
因此在
$ \mathbb{R}_ + ^2 = \{ u \ge 0, v \ge 0\} $ 上,映射(u,v)→(U,V)是可逆且连续的,(u,v)是(U,V)的函数,且(u,v)和(U,V)之间存在一一对应关系,则系统(1)的平衡态方程等价于如下椭圆系统显然方程(5)存在平凡解(0,0),此外,当a>λ1时方程(5)存在平凡解(θa,0);当b>λ1时方程(5)存在平凡解(0,kθb).令
${C_0}(\bar \varOmega ) = \left\{ {U \in {C_0}(\bar \varOmega ):U = 0, x \in \partial \varOmega } \right\} $ ,并定义算子$ {L_a}w = - \Delta w - \left( {a - 2{\theta _a}} \right)w$ ,$w \in {C^2}(\varOmega ) \cap {C_0}(\bar \varOmega ) $ .易知,算子La的所有特征值都是正的,这说明La可逆.引理1 若a≤λ1或者b≤λ1,则方程(5)没有正解.
证 假设方程(5)有正解(U,V),由方程(5)关于U的方程可得
两边同乘U,在Ω上积分,结合Green公式得
由Poincaré不等式知
${\lambda _1}\left\| U \right\|_2^2 < \left\| {\nabla U} \right\|_2^2 $ .从而a>λ1,同理可得b>λ1.因此当a≤λ1或b≤λ1时,方程(5)没有正解.引理2 若a,b>λ1,(U,V)是方程(5)的任一正解,则对于任意的x∈Ω,有
证 设存在
${{x_0} \in \bar \varOmega } $ ,使得由于
从而有
进而有v(x0)<au(x0)<a2,因此有
同理可得
从而定理得证.
-
由于分歧正解的存在性与特征值问题密切相关,因此在讨论分歧正解的存在性之前给出两个与分歧正解存在性相关的特征值引理.
引理3[7] 设b>λ1,则存在唯一的a=a*(b)∈(λ1,+∞),满足
${\lambda _1}\left( {\frac{{ - b}}{{1 + \beta {\theta _a}}}} \right) = 0 $ ,且a=a*(b)关于b严格单调递增.引理4[7] 设b>λ1,则存在唯一的a=a*(b)∈(λ1,+∞),满足
${\lambda _1}\left( {\frac{{ - a}}{{1 + \alpha k{\theta _b}}}} \right) = 0 $ ,且a=a*(b)关于b严格单调递增.设
$C_0^1(\bar \varOmega ) = \left\{ {U \in {C^1}(\bar \varOmega ):U\mid \partial \varOmega = 0} \right\} $ .定义$ C_0^1(\bar \varOmega )$ 中的范数为通常的Banach空间${{C^1}(\bar \varOmega )}$ 中的范数.令$X = C_0^1(\bar \varOmega ) \times C_0^1(\bar \varOmega ) $ .则X是Banach空间.固定b>λ1,以a为分歧参数,讨论系统(5)发自半平凡解曲线$\left\{ {\left( {a;{U_*}, {v_*}} \right) = \left( {a;{\theta _a}, 0} \right), a > {\lambda _1}} \right\} $ 和$\left\{ {\left( {a;{U^*}, {v^*}} \right) = \left( {a;0, k{\theta _b}} \right), b > {\lambda _1}} \right\} $ 上的分歧正解.令
其中(u,v)是(U,V)的函数,将(3)式在(U,V)=(θa,0)处Taylor展开得
其中(6)式中偏导数均为(θa,0)处的导数值,Qi(a; U-θa,V)满足Qi(a; U-θa,V)(0,0)=0,i=1,2,且有
定理1 设a>λ1,b>λ1,则
$\left( {{a_*};{\theta _a}, 0} \right) \in {\mathbb{R} ^ + } \times X$ 为系统(5)的分歧点,且在(a*;θa*,0)的邻域内存在正解,即其中,ϕ∈C01(Ω),σ>0充分小,(a(s);ϕ1(s),ψ1(s))是C1连续函数,且满足a(0)=a*,ϕ1(0)=0,ψ1(0)=0,
$ \int_\varOmega {{\psi _1}} {\psi _ * } = 0$ .且证 在(6)式中,令
$\bar U = U - {\theta _a} $ ,则有显然G(a;0,0)=0.记G(a;U,V)关于(U,V)在(a*;0,0)处的Fréchet导数为L(a*;0,0).经计算L(a*;0,0)(ϕ,ψ)=0等价于
如果ψ=0,则由算子La*可逆知ϕ=0,则ϕ不恒为0.又
${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0 $ ,故有因此算子L(a*;0,0)的核空间N(L(a*;0,0))=span{(ϕ*,ψ*)T}.令L*(a*;0,0)为L(a*;0,0)的自伴算子,经计算L*(a*;0,0)(ϕ,ψ)=0等价于
显然ϕ≡0.由
$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0$ 得ψ=ψ*.所以得N(L(a*;0,0))=span{0,ψ*}.由Fredholm选择定理知因此得
令
${L_1}\left( {{a_*};0, 0} \right) = D_{a(\bar U, v)}^2G\left( {{a_*};0, 0} \right) $ .接着用反证法说明L1(a*;0,0)(ϕ*,ψ*)∉R(L(a*;0,0)).假设存在(w0,x0)∈X,使得L1(a*;0,0)(ϕ*,ψ*)=L(a*;0,0)(w0,x0).经过计算那么有
两边同时乘ψ*,然后在Ω上积分,结合Green公式得
由于
所以有
由于θa关于a严格单调递增,则(11)式左边大于0.从而矛盾,即L1(a*;0,0)(ϕ*,ψ*)∉R(L(a*;0,0)).
至此,由Grandall-Rabinowitz简单特征值局部分歧定理[12]知,存在充分小的σ>0和C1连续曲线
$\left( {a(s);{\phi _1}(s), {\psi _1}(s)} \right):( - \sigma , \sigma ) \to \mathbb{R} \times X $ ,使得$a(0) = {a_*}, {\phi _1}(0) = {\psi _1}(0) = 0, {\phi _1}(s), {\psi _1}(s) \in \mathbb{Z} $ ,其中$X = \mathbb{Z} \oplus N\left( {L\left( {{a_*};0, 0} \right)} \right), (a(s);\bar U(x) $ ,v(x))=(a(s);s(ϕ*+ϕ1(s)),s(ψ*+ψ1(s))),满足$G(a(s);\bar U, V) = 0 $ .因此$(a(s);\bar U(s), V(s)), (|s| < \sigma ) $ 是方程(5)的分歧解.其中$\bar U(s) = {\theta _a}, + s\left( {{\phi _*} + {\phi _1}(s)} \right) $ ,V(s)=s(ψ*+ψ1(s)).同理可得发自半平凡解分支(a*;0,kθb)的局部分歧正解.
定理2 设a,b>λ1,则
$\left( {{a_*};0, k{\theta _b}} \right) \in {\mathbb{R} ^ + } \times X $ 为系统(5)的分歧点,且在(a*;0,kθb)的邻域内存在正解,即其中:
${\psi ^*} \in {C_0}^1(\bar \varOmega ), \sigma > 0 $ 充分小,(a(s);ϕ2(s),ψ2(s))是C1连续函数,满足a(0)=a*,ϕ2(0)=0,ψ2(0)=0,$\int_\varOmega {{\phi _2}} {\phi ^*} = 0 $ ,且
-
本节主要参照文献[11-12]中的方法,将局部分支延拓为整体分支.这里取
$ {P_1} = \left\{ {u \in C_0^1(\bar \varOmega ):u(x) > 0, x \in \varOmega , \frac{{\partial u}}{{\partial n}} < 0, x \in \partial \varOmega } \right\}$ ;$P = \left\{ {(a, U, V) \in {\mathbb{R}^ + } \times X:U, V \in {P_1}} \right\} $ .定理3 若a,b>λ1,则由定理1给出的分歧正解Γ*在正锥P内可延拓为全局分歧,并且存在常数a∞充分大,使得当a>a∞时,全局分歧曲线随参数a延伸到无穷.
证 (7)式等价于
定义算子
$K:{\mathbb{R} ^ + } \times X \to X $ 为$K(a;\bar U, V) $ 为X的紧可微算子.令
${K^\prime }(a) = {D_{(\bar U, V)}}K(a;0, 0) $ .设μ≥1是K(a)的一个特征值,相应的特征值函数设为(ξ,η)且不恒为0,经计算(ξ,η)满足若η≡0,由算子(-μΔ-a+2θa)可逆知ξ≡0,矛盾,则η≠0.令
则一定存在某个i(i=1,2,…),使得λi(μ,ha)=0.对任意i,λi(μ,ha)关于μ≥1和a≥λ1均严格单调递增,即λ1(μ,ha)<λ2(μ,ha)≤λ3(μ,ha)≤…→∞.特别地,λ1(μ,ha)=0.另外,若存在某个i(i=1,2,…),使得λi(μ,ha)=0,则μ≥1一定为K′(a)的特征值.换言之,当且仅当有i存在使λi(μ,ha)=0时,μ≥1是K′(a)的一个特征值.
令a>a*,∀μ≥1,i≥0有λi(μ,ha*)≥λ2(μ,ha*)>λ1(1,ha*).因此,K′(a)没有大于或等于1的特征值.此时有i(K(a;·),0)=1.
设存在充分小的γ使得a*-γ<a<a*且λ2(μ,a*-γ)≥λ1(μ,ha*),则对于∀μ≥1,i≥2有λi(μ,ha)≥λ2(μ,ha)>λ2(μ,ha*-γ)≥λ1(μ,ha*)>λ1(1,ha*)=0.因λ1(1,ha)<λ1(1,ha*)=0,
$\mathop {\lim }\limits_{\mu \to \infty } {\lambda _1}\left( {\mu , {h_{{a_*}}}} \right) = + \infty $ 且λ1(μ, ha*)关于μ单调递增,则存在唯一的μ1>1,使λ1(μ,ha*)=0,从而有其中
$\bar \eta $ >0为下列方程特征值问题的主特征函数其中
下面证μ1的代数重数为1.只需证
若不然,为了不失一般性,设
$ (\bar \xi , \bar \eta ) \in R\left( {{\mu _1}I - {K^\prime }(a)} \right)$ ,则存在(ξ,η)∈X,使得即
在(16)式的两端同乘以
$\bar \eta $ ,利用Green公式在Ω上积分得另外,结合(16)式可得
与ha<0矛盾.故μ1的代数重数为1.因此当a*-γ<a<a*时i(K(a;·),0)=-1.
由全局分歧定理知,在
${\mathbb{R} ^ + } \times P $ 内存在从(a*; θa,0)出发的连通分支C0满足G(a;ξ,η)=0且在(a*;θa,0)附近. G(a;U,V)=0的所有零点都在定理1给出的那条分支曲线上.记则C为系统(5)由(a*;θa*,0)的解曲线,在(a*;θa*,0)的小邻域内有C∈P,而且分支C-{(a*;θa*,0)}满足下列条件之一:
1) C连接了分歧点(a*;θa*,0)和
$\left( {\tilde a;{\theta _{\tilde a}}, 0} \right) $ ,其中$I - {K^\prime }(\tilde a){\rm{ }} $ 不可逆且${a_*} \ne \tilde a $ ;2) C在
${\mathbb{R} ^ + } \times P $ 内由(a*;θa*,0)延伸到∞.下面证明C-{(a*;θa*,0)}⊆P.假设
$C - \left\{ {\left( {{a_*};{\theta _{{a_*}}} , 0} \right)} \right\} \not\subseteq P $ ,则存在点$\{ (\tilde a, {\rm{ }}\tilde U, \tilde V)\} \in C - \left\{ {\left( {{a_*};{\theta _{{a_*}}}, 0} \right)} \right\} \cap \partial P $ 和序列{an,Un,Vn}⊆C∩P,Un>0,Vn>0,使得n→∞时,$ \left( {{a_n}, {U_n}, {V_n}} \right) \to (\tilde a, {\rm{ }}\tilde U, \tilde V)$ .由于(un,vn)和(Un,Vn)之间存在一一对应的关系知(un,vn)→(θa,0).因此$\tilde U \in \partial {P_1} $ 或$ \tilde V \in \partial {P_1}$ .假设
$\tilde U \in \partial {P_1} $ ,那么$\tilde U \ge 0, x \in \bar \varOmega $ .则要么存在x0∈Ω,使得$\tilde U\left( {{x_0}} \right) = 0 $ ;要么存在${x_0} \in \partial \varOmega $ ,使得${\left. {\frac{{\partial \tilde U}}{{\partial n}}} \right|_{{x_0}}} = 0 $ .显然由最大值原理知$\tilde U \equiv 0 $ .同理,假设$\tilde V \in \partial {P_1} $ ,则$\tilde V \equiv 0 $ .因此$ (\tilde U, \tilde V)$ 有下面3种可能:1)
$(\tilde U, \tilde V) \equiv \left( {0, 0} \right) $ ;2)
$(\tilde U, \tilde V) \equiv \left( {{\theta _a}, 0} \right) $ ;3)
$(\tilde U, \tilde V) \equiv \left( {0, k{\theta _b}} \right) $ .首先利用反证法证明1)不成立.假设存在序列
${\alpha _n} \to \infty , {a_n} \to \tilde a, \left( {{U_n}, {V_n}} \right) $ 在[L∞(Ω)]2中收敛到(0,kθb),由于(un,vn)和(Un,Vn)之间存在一一对应的关系知(un,vn)→(0,kθb).令$ {{\tilde U}_n} = \frac{{{U_n}}}{{{{\left\| {{U_n}} \right\|}_\infty }}}$ ,则${{\tilde U}_n} $ 满足下面方程由LP估计和Sobolev嵌入定理知
$\vec{U}_{n} \rightarrow u_{n} $ (在C1范数意义下),且满足所以
$\tilde U = 0 $ 与${\left\| {{U_n}} \right\|_\infty } = 1 $ 矛盾.接着证明2)不成立,假设
$(\tilde U, \tilde V) \equiv \left( {{\theta _a}, 0} \right) $ ,则当n→∞时$\left( {{a_n};{U_n}, {V_n}} \right) \to \left( {\tilde a;{\theta _a}, 0} \right) $ .令${{\tilde V}_n} = \frac{{{V_n}}}{{{{\left\| {{V_n}} \right\|}_\infty }}} $ ,则${{\tilde V}_n} $ 满足下面方程由极大值原理知
${\tilde V} $ >0,因此${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) = 0 $ 与$\tilde a \ne {a_ * } $ 矛盾.通过以上讨论知3)成立,即C-{(a*;θa*,0)}⊆P.因为
${\left\| {{U_n}} \right\|_\infty }, {\left\| {{V_n}} \right\|_\infty } $ 有界.则全局分歧曲线只能沿参数a延伸到∞.注1 注意到
$u(x) = \frac{U}{{1 + \alpha v}} < U, v(x) = \frac{V}{{1 + \beta u}} < V $ ,由引理2知u,v有界.注2 注意到(u,v)≥(0,0)和(U,V)≥(0,0)之间存在一一对应的关系,由定理1和定理2知模型(5)存在分歧正解.
-
本节参考文献[14]的方法主要分析了系统(5)的平凡解和半平凡解的稳定性.显然系统(5)的平凡解是(0,0),半平凡解是(θa,0)(a>λ1),(0,kθb)(b>λ1).
定理4 1)若a<λ1且b<λ1,则平凡解(0,0)是渐近稳定的;相反地,若a>λ1或者b>λ1,则平凡解(0,0)是不稳定的.
2) 假设a>λ1.若
$\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right)>0 $ ,则(θa,0)是渐近稳定的;若$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$ ,则(θa,0)是不稳定的.3) 假设b>λ1.若
$\lambda_{1}\left(-\frac{a}{1+\alpha k \theta_{b}}\right)>0 $ ,则(0,kθb)是渐近稳定的;若${\lambda _1}\left( { - \frac{a}{{1 + \alpha k{\theta _b}}}} \right) < 0 $ ,则(0,kθb)是不稳定的.证 因为3种情况的证明过程相似,所以在此只证定理4中的情况(2).由线性化原理知,(θa,0)的稳定性由下面特征值问题决定
由于(18)中的方程不是完全对称的,需要考虑下面两个特征值问题
和
由文献[14]知(18)式的特征值是(19)式和(20)式的组合.分别记(19)式和(20)式的特征值为λ*和λ*,则有
为了研究λ*,因V=(1+βu)v,则由主特征值的变分原理得
则有
${\lambda _*} > {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) $ ,此时$\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right)>0 ; \lambda_{*}<\lambda_{1}\left(-\frac{b}{1+\beta \theta_{a}}\right) $ ,此时$ {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$ .若
${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) > 0 $ ,则系统(5)所有的特征值都是正的,因此(θa,0)是渐近稳定的;另一方面,若${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right) < 0 $ ,则系统(5)有一个负的特征值,这说明(θa,0)是不稳定的.