留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

施氮量对覆膜旱作水稻产量形成和冠层光谱特性的影响

上一篇

下一篇

郭琳, 王化宏, 程道德, 等. 施氮量对覆膜旱作水稻产量形成和冠层光谱特性的影响[J]. 西南大学学报(自然科学版), 2021, 43(1): 67-74. doi: 10.13718/j.cnki.xdzk.2021.01.008
引用本文: 郭琳, 王化宏, 程道德, 等. 施氮量对覆膜旱作水稻产量形成和冠层光谱特性的影响[J]. 西南大学学报(自然科学版), 2021, 43(1): 67-74. doi: 10.13718/j.cnki.xdzk.2021.01.008
GUO Lin, WANG Hua-hong, CHENG Dao-de, et al. Effect of Nitrogen Fertilization on Yield Formation and Spectral Indices in the Canopy of a 'Ground Cover Rice Production System(GCRPS)'[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 67-74. doi: 10.13718/j.cnki.xdzk.2021.01.008
Citation: GUO Lin, WANG Hua-hong, CHENG Dao-de, et al. Effect of Nitrogen Fertilization on Yield Formation and Spectral Indices in the Canopy of a "Ground Cover Rice Production System(GCRPS)"[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 67-74. doi: 10.13718/j.cnki.xdzk.2021.01.008

施氮量对覆膜旱作水稻产量形成和冠层光谱特性的影响

  • 基金项目: 国家自然科学基金项目(41371286,51139006)
详细信息
    作者简介:

    郭琳,博士,讲师,主要从事水稻覆膜旱作栽培研究 .

    通讯作者: 林杉,教授
  • 中图分类号: S511

Effect of Nitrogen Fertilization on Yield Formation and Spectral Indices in the Canopy of a "Ground Cover Rice Production System(GCRPS)"

  • 摘要: 试验共设5个氮肥施用量(0,60,120,180,240 kg/hm2),测定籽粒产量、产量构成因子、水稻冠层6种高光谱指数,并将高光谱指数与产量和产量构成因子进行回归分析.获得如下主要结果:①增加施氮量,显著提高了覆膜旱作水稻籽粒和秸秆产量;②覆膜旱作水稻的有效穗和穗粒数,随着施氮量增加呈增长趋势;③水稻冠层比值植被指数(RVI)与覆膜旱作水稻产量、产量构成因子以及氮肥利用效率呈显著正相关关系.
  • 加载中
  • 图 1  5个施氮量处理下覆膜旱作水稻栽培体系的籽粒产量、秸秆产量和收获指数(n=3).

    图 2  籽粒实际产量与理论产量的相关性(n=15)

    图 3  5个施氮量处理下的覆膜旱作水稻栽培体系的有效穗a,穗粒数b,千粒质量c(n=3),结实率d

    图 4  4个施氮量处理下覆膜旱作水稻栽培体系的氮肥农学利用效率(n=3)

    表 1  拔节期水稻光谱指数与氮肥施用量、氮质量分数、籽粒和秸秆产量、产量构成因子和氮肥农学利用效率的二次多项式决定系数(n=15)

    光谱指数 模型类型 施氮量/
    (kg·hm-2)
    含氮量/
    (kg·hm-2)
    籽粒产量/
    (kg·hm-2)
    秸秆产量/
    (kg·hm-2)
    有效穗/
    (穗·m-2)
    穗粒数/
    (千粒·m-2)
    千粒质量/
    g
    结实率/
    %
    氮肥农学利用率/
    (kg·kg-1)
    DVI-1 拔节期 0.471 4** 0.693 1*** 0.520 0** 0.716 2*** 0.439 2* 0.220 5ns 0.667 9*** 0.287 4ns 0.222 2ns
    DVI-2 拔节期 0.470 7** 0.701 7*** 0.532 0** 0.711 2*** 0.433 2* 0.232 9ns 0.654 5*** 0.283 0ns 0.020 9ns
    RVI-1 拔节期 0.733 9*** 0.615 2*** 0.714 0*** 0.635 8*** 0.673 5*** 0.475 4** 0.582 1** 0.275 0ns 0.444 2**
    RVI-2 拔节期 0.768 2*** 0.667 0*** 0.724 0*** 0.627 0*** 0.694 6*** 0.574 1** 0.549 2** 0.269 6ns 0.510 3**
    NDVI 拔节期 0.583 3** 0.557 8** 0.702 0*** 0.611 0*** 0.593 2** 0.404 0* 0.628 7*** 0.296 0* 0.410 5*
    GNDVI 拔节期 0.598 4** 0.609 1*** 0.693 0*** 0.605 2*** 0.580 8** 0.423 2* 0.568 8** 0.272 3ns 0.430 8**
    注:***表示0.001水平差异具有统计学意义;**表示0.01水平差异具有统计学意义;*表示0.05水平差异具有统计学意义;ns表示不具有统计学意义.
    下载: 导出CSV

    表 2  拔节期光谱参数RVI-2与水稻籽粒产量、秸秆产量、氮质量分数,氮肥农学利用效率、有效穗、穗粒数和千粒质量的回归方程(n=15)

    产量参数 回归方程
    籽粒产量/(kg·hm-2) y=-0.085 0x2+1.631 0x+2.367 0
    秸秆产量/(kg·hm-2) y=-0.112 2x2+2.340 4x+3.039 5
    含氮量/(g·kg-1) y=-0.014 4x2+0.283 5x-0.059 9
    氮肥农学利用效率/(kg·kg-1) y=0.897 3x2-13.687 0x+64.579 0
    有效穗/(粒·m-2) y=-2.587 2x2+44.477 0x+99.481 0
    穗粒数/(粒·每穗-1) y=-1.282 2x2+21.898 0x+45.488 0
    千粒质量/g y=-0.018 6x2+0.411 7x +28.758 0
    下载: 导出CSV
  • [1] BELDER P, SPIERTZ J H J, BOUMAN B A M, et al. Nitrogen Economy and Water Productivity of Lowland Rice under Water-saving Irrigation [J]. Field Crops Research, 2005, 93(2/3): 169-185.
    [2] BOUMAN B A M, HUMPHREYS E, TUONG T P, et al. Rice and Water [M] //Advances in Agronomy. Amsterdam: Elsevier, 2007.
    [3] TAO Y Y, QU H, LI Q J, et al. Potential to Improve N Uptake and Grain Yield in Water Saving Ground Cover Rice Production System [J]. Field Crops Research, 2014, 168: 101-108. doi: 10.1016/j.fcr.2014.08.014
    [4] GUO L, LIU M J, ZHANG Y N, et al. Yield Differences Get Large with Ascendant Altitude between Traditional Paddy and Water-saving Ground Cover Rice Production System [J]. European Journal of Agronomy, 2018, 92: 9-16. doi: 10.1016/j.eja.2017.09.005
    [5] TAO Y Y, ZHANG Y N, JIN X X, et al. More Rice with less Water-Evaluation of Yield and Resource Use Efficiency in Ground Cover Rice Production System with Transplanting [J]. European Journal of Agronomy, 2015, 68: 13-21. doi: 10.1016/j.eja.2015.04.002
    [6] JIN X X, ZUO Q, MA W W, et al. Water Consumption and Water-saving Characteristics of a Ground Cover Rice Production System [J]. Journal of Hydrology, 2016, 540: 220-231. doi: 10.1016/j.jhydrol.2016.06.018
    [7] YAO Z S, DU Y, TAO Y Y, et al. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system [J]. Biogeosciences, 2014, 11: 6221-6236.
    [8] LIU M, DANNENMANN M, LIN S, et al. Ground Cover Rice Production System Facilitates Soil Carbon and Nitrogen Stocks at Regional Scale [J]. Biogeosciences Discussions, 2015, 12(4): 3647-3674. doi: 10.5194/bgd-12-3647-2015
    [9] LIU M J, LIN S, DANNENMANN M, et al. Do Water-saving Ground Cover Rice Production Systems Increase Grain Yields at Regional Scales? [J]. Field Crops Research, 2013, 150: 19-28. doi: 10.1016/j.fcr.2013.06.005
    [10] KU H H, HAYASHI K, AGBISIT R, et al. Effect of Rates and Sources of Nitrogen on Rice Yield, Nitrogen Efficiency, and Methane Emission from Irrigated Rice Cultivation [J]. Archives of Agronomy and Soil Science, 2017, 63(7): 1009-1022. doi: 10.1080/03650340.2016.1255327
    [11] QU H, TAO H B, TAO Y Y, et al. Ground Cover Rice Production System Increases Yield and Nitrogen Recovery Efficiency [J]. Agronomy Journal, 2012, 104(5): 1399-1407. doi: 10.2134/agronj2011.0419
    [12] 刘祥臣, 乔利, 刘春增, 等.覆膜条件下不同施N量对水稻'两优6326'生理指标的影响[J].中国农学通报, 2012, 28(9): 33-37. doi: 10.3969/j.issn.1000-6850.2012.09.007
    [13] 邓小强, 范贵国, 王懿.施氮量对覆膜栽培水稻经济性状、产量与氮肥利用的影响[J].湖北农业科学, 2016, 55(16): 4103-4106.
    [14] LIU M J, LIANG W L, QU H, et al. Ground Cover Rice Production Systems are more Adaptable in Cold Regions with High Content of Soil Organic Matter [J]. Field Crops Research, 2014, 164: 74-81. doi: 10.1016/j.fcr.2014.05.018
    [15] 赵春江.农业遥感研究与应用进展[J].农业机械学报, 2014, 45(12): 277-293. doi: 10.6041/j.issn.1000-1298.2014.12.041
    [16] 方孝荣, 高俊峰, 谢传奇, 等.农作物冠层光谱信息检测技术及方法综述[J].光谱学与光谱分析, 2015, 35(7): 1949-1955. doi: 10.3964/j.issn.1000-0593(2015)07-1949-07
    [17] 薛利红, 杨林章, 范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报, 2006, 32(3): 430-435. doi: 10.3321/j.issn:0496-3490.2006.03.019
    [18] 周冬琴, 朱艳, 田永超, 等.以冠层反射光谱监测水稻叶片氮积累量的研究[J].作物学报, 2006, 32(9): 1316-1322. doi: 10.3321/j.issn:0496-3490.2006.09.009
    [19] 李修华, 李民赞, 崔笛, 等.基于双波段作物长势分析仪的东北水稻长势监测[J].农业工程学报, 2011, 27(8): 206-210. doi: 10.3969/j.issn.1002-6819.2011.08.035
    [20] 宋红燕, 胡克林, 彭希.基于高光谱技术的覆膜旱作水稻植株氮含量及籽粒产量估算[J].中国农业大学学报, 2016, 21(8): 27-34.
  • 加载中
图( 4) 表( 2)
计量
  • 文章访问数:  729
  • HTML全文浏览数:  729
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-20
  • 刊出日期:  2021-01-20

施氮量对覆膜旱作水稻产量形成和冠层光谱特性的影响

    通讯作者: 林杉,教授
    作者简介: 郭琳,博士,讲师,主要从事水稻覆膜旱作栽培研究
  • 1. 中国农业大学 资源与环境学院,北京 100193
  • 2. 江西农业大学 农学院,南昌 330045
  • 3. 湖北省十堰市房县农业局,湖北 十堰 442000
基金项目:  国家自然科学基金项目(41371286,51139006)

摘要: 试验共设5个氮肥施用量(0,60,120,180,240 kg/hm2),测定籽粒产量、产量构成因子、水稻冠层6种高光谱指数,并将高光谱指数与产量和产量构成因子进行回归分析.获得如下主要结果:①增加施氮量,显著提高了覆膜旱作水稻籽粒和秸秆产量;②覆膜旱作水稻的有效穗和穗粒数,随着施氮量增加呈增长趋势;③水稻冠层比值植被指数(RVI)与覆膜旱作水稻产量、产量构成因子以及氮肥利用效率呈显著正相关关系.

English Abstract

  • 随着人口增长、工业和生活用水数量增加以及耕地面积减少,传统淹水水稻生产正面临着前所未有的严峻挑战[1-2].因此,发展和推广水稻节水栽培技术,已引起人们越来越多的关注.已有文献证实,水稻覆膜旱作可显著提高籽粒产量[3-4]和灌溉水利用效率[5-6]、减少温室气体排放[7]、增加土壤碳氮储量[8].氮素和水分管理在覆膜旱作节水、增产效果中发挥着关键作用[9].随着施氮量增加,水稻产量相应提高[10],且不同施氮水平对水稻生育期有很大影响.然而,覆膜后追肥困难,一次性基施氮肥过多,可能导致水稻营养生长过旺,生殖生长缺氮早衰[11].覆膜栽培条件下,氮肥一次性基施过多可导致生育期延长,易贪青晚熟和倒伏[12].合理施用氮肥,减少无效分蘖、提高成穗率、保证单位面积有效穗数、提高结实率和增加穗实粒数是促进覆膜栽培水稻增产的重要技术措施[13].营养生长期和生殖生长期作物生长速率和氮素吸收速率,可以用于覆膜旱作水稻的氮素营养诊断[11, 14],但不能满足即时诊断和确定氮肥施用量的需求.

    植株氮质量分数和叶片叶绿素质量分数,常常用于诊断水稻氮素营养状况.然而,植株氮质量分数测定无法原位进行、时效性差,且耗费人力物力.而叶片叶绿素质量分数的直接测定和便携式SPAD仪间接测定方法,不能很好地反映群体营养状况,代表性不足.高光谱技术可以快速、无损地反映作物冠层信息,近年来在作物营养诊断和产量估测方面都得到了广泛的应用[15-16].已有研究表明,高光谱诊断技术可用于水稻氮素营养诊断和产量估算[17],但相关研究均是在常规淹水种植方式下进行的[17-19].近期应用高光谱诊断技术对覆膜旱作水稻氮素诊断和产量估算,获得了良好的效果[20].然而,冠层高光谱技术能否表征覆膜旱作水稻生长状况、产量构成因子和氮肥利用效率,以及氮肥施用量对覆膜旱作水稻产量和生长的影响则鲜见报道.本研究以湖北房县山区覆膜旱作水稻为研究对象,分析不同氮肥处理水平下的水稻冠层光谱指数与水稻产量、产量构成因子以及氮肥利用效率的关系,旨在为覆膜旱作水稻的氮素营养诊断和优化氮肥管理提供快速有效的原位无损检测方法.

  • 于2018年在湖北省十堰市房县(32°07′ N,110°43′ E,海拔440 m)布置大田试验.房县位于中国中部山区,属亚热带季风性气候,年均降水量830 mm,年平均气温14.2 ℃.年均太阳辐射量(1 850±150) h,无霜期(225±15) d[5].降水量、气温和太阳辐射量来自位于试验小区约100 m的气象站,多年气象资料来自房县农业局. 0~20 cm土壤砂粒、粉粒和黏粒占比分别为20%,60%和20%,土壤有机质和总氮质量分数分别为21.3 g/kg和1.31 g/kg,pH值为6.0.

  • 试验共设置5个氮肥施用量处理,分别为0,60,120,180,240 kg/hm2,重复3次,共15个小区,随机区组排列.由于覆膜后无法追肥,氮肥(尿素)、磷肥(过磷酸钙,105 kg/hm2)和钾肥(氯化钾,135 kg/hm2)均作为基肥,于插秧前一次性基施.供试水稻品种为宜香3728,株距18 cm,行距26 cm. 2018年4月29日移栽.小区面积4 m×4 m,小区内分设3个种植厢面,试验期间严格按照覆膜旱作栽培体系技术要求进行水分管理.全生育期内不建立水层,沟中有水,厢面无水.移栽至最大分蘖期,维持土壤含水量基本处于饱和状态;最大分蘖期后土壤含水量保持在田间最大持水量的80%左右.每个小区在90 cm深处安装水表,用来监测水分投入和流失.本试验所用灌溉水来自于试验地附近的水井,由水泵恒定供水.所有覆膜小区土壤含水量均由电容探头(Diviner 2000,Sentek,Australia)实时监测.

  • 在拔节期(7月13日)和抽穗期(8月1日)采集水稻植株样品,每小区3穴.用元素分析仪(EA1108,Fisons Instruments,Italy)测定植株样品全氮质量分数.

    收获期实际测产面积为9 m2(3 m×3 m).实际测产前,在每个采样地块的实际测产区域内,选取具有代表性的8穴水稻植株样品用于考种.将考种的8穴水稻植株样品分成秸秆和穗,调查有效穗数、穗粒数、千粒质量和结实率(穗实粒数/穗粒数×100 %),计算水稻理论产量.

    其中,TY表示理论产量,PT表示有效穗数,SP表示穗粒数,PFG表示结实率,TGW表示千粒质量.

    其中,AE表示氮肥农学利用效率,GYN表示施氮区籽粒产量,GYN0表示不施氮区籽粒产量,NAR表示施氮量.

  • 在水稻拔节期和抽穗期,采用便携式光谱仪(GER 1500,SVC Co. U.S.)进行冠层光谱测定,光谱测量范围为350~1 050 nm,采样间隔为1.6 nm,光谱分辨率为1.5 nm.测定时间为11:00-14:00.测定时,镜头垂直于水稻冠层,与冠层顶相距约0.5 m,高光谱仪视场角为23°.每个小区随机采集10个点,取平均值作为该小区的光谱反射值.本研究选用绿光区的552 nm、红光区的674 nm和近红外区的890 nm共3个敏感波段,分别计算差值植被指数(DVI-1和DVI-2)、比值植被指数(RVI-1和RVI-2)、归一化植被指数NDVI和绿色归一化植被指数GNDVI,用于描述覆膜旱作水稻的光谱特征[20].

  • 采用Shapiro-Wilk过程进行数据的正态分布检验.如果数据不符合正态分布,则采用非参数进行统计检验.本文采用统计分析系统(SAS)8.2版本对水稻籽粒理论产量与实际产量、籽粒实际产量与产量构成因子进行了相关性分析,用Pearson's系数表示.对不同氮肥处理间的水稻产量、产量构成因子和氮肥利用效率采用SAS中广义线性模型(GLM)进行方差分析.最后,通过二次多项式回归分析,确定覆膜旱作水稻不同生育期的最佳光谱指数.

  • 随着施氮量增加,覆膜旱作水稻籽粒和秸秆产量均逐渐增加(图 1).施氮量为240 kg/hm2的处理籽粒产量显著高于其他处理;施氮量介于60~180 kg/hm2之间,籽粒产量不存在差异,但均显著高于不施氮处理. 4个施用氮肥的处理秸秆产量不存在显著差异,但施氮量180 kg/hm2和240 kg/hm2处理显著高于不施氮处理.各处理收获指数不存在差异(图 1).

    水稻籽粒理论产量与实际产量呈极显著正相关关系(图 2).覆膜旱作水稻有效穗随施氮量增加而逐渐增加;4个施氮处理间有效穗不存在差异(不施氮处理除外),但均显著高于不施氮处理(图 3a).穗粒数随着施氮量增加亦呈增加趋势;施氮量介于120~240 kg/hm2,穗粒数不存在显著差异(图 3b),但240 kg/hm2施氮量处理显著高于不施氮和施氮量60 kg/hm2处理. 4个施用氮肥处理千粒质量不存在差异,但显著高于不施氮处理(图 3c).所有施氮处理的结实率,均不存在差异(图 3d).施氮量60 kg/hm2处理的氮肥农学利用效率显著高于施氮量120 kg/hm2,180 kg/hm2,240 kg/hm2处理;施氮量高于120 kg/hm2,氮肥农学利用效率没有差异(图 4).

  • 拔节期,冠层差值植被指数(DVI)、比值植被指数(RVI)和归一化植被指数(NDVI和GNDVI)与水稻结实率,均不存在显著正相关关系(表 1),但与含氮量、籽粒产量、秸秆产量、氮肥利用效率、有效穗、穗粒数和千粒质量存在不同程度的相关关系.抽穗期上述3种光谱指数与水稻施氮量、氮质量分数和有效穗存在不同程度的相关关系(数据未展示);与籽粒产量、秸秆产量、氮肥利用效率、穗粒数、千粒质量和结实率均不存在相关关系或弱相关关系.

    拔节期冠层比值植被指数(RVI)与施氮量、含氮量、氮肥利用效率、有效穗和穗粒数相关关系的决定系数,高于差值和归一化植被指数(表 1).基于二次多项式模型,比值植被指数(RVI)与施氮量和氮肥利用效率呈显著正相关关系;据此构建的比值光谱指数RVI-2与水稻产量因子的估算模型见表 2.

    依据表 2的模型,估算的籽粒产量、氮质量分数、氮肥利用效率、有效穗、穗粒数和千粒质量,分别与实测值之间存在显著正相关关系,表明覆膜旱作水稻拔节期光谱指数回归模型,可较好地用于覆膜旱作水稻氮素营养诊断和产量估计.

  • 水稻覆膜旱作追肥困难,栽培技术指南要求一次性基施150 kg/hm2尿素,并且配施有机肥,以解决一次性大量施用化学氮肥可能导致水稻营养生长过旺和生殖生长缺氮的问题[11].然而,由于当地有机肥资源短缺,施用有机肥耗费人力,在实际生产过程中往往简化成仅仅施用150 kg/hm2尿素[14, 4].本项研究结果表明,随着氮肥施用量增加可显著提高覆膜旱作水稻籽粒和秸秆产量;施用量达240 kg/hm2,籽粒产量显著高于施氮量介于60~180 kg/hm2的处理.进一步分析表明,随着施氮量增加覆膜旱作水稻有效穗、千粒质量和穗粒数显著提高,而结实率无差异.随着施氮量增加,覆膜旱作水稻氮肥农学利用效率呈下降趋势;然而施氮量介于120~240 kg/hm2之间,氮肥农学利用效率不存在显著差异.这与先前在东北寒地稻作区[14]和贵州山区[13]水稻覆膜旱作研究报道的施氮量120 kg/hm2,并不一致,其主要原因在于上述研究区域土壤有机氮质量分数明显高于本研究区.针对不同土壤条件,选择合理的施氮量,对于进一步发挥覆膜旱作水稻的增产潜力具有十分重要的意义.

    过量基施化学氮肥可能导致覆膜旱作水稻生育期延长、无效分蘖过多、贪青晚熟和倒伏[12, 5].最新的研究结果认为,采用生物可降解膜和氮肥分次施用,可以解决上述营养生长和生殖生长氮素供应不均衡的问题,从而进一步显著提高覆膜旱作水稻产量和氮肥农学利用效率.然而,生物可降解膜成本高,生产上尚未推广应用.如何依据土壤、气候和栽培条件的差异,即时诊断和确定覆膜旱作水稻最佳施氮量,对于进一步发挥覆膜旱作水稻的增产潜力尤显重要.

  • 常规淹水栽培体系拔节期和抽穗期,水稻籽粒产量与水稻冠层归一化植被指数(NDVI)显著相关[19].然而,我们的结果表明,相对于冠层差值植被指数(DVI)、归一化植被指数(NDVI)和绿色归一化植被指数(GNDVI),拔节期比值植被指数(RVI)能够更好地反映覆膜旱作水稻植株氮素营养状况和产量构成因子(表 1).这可能是由于覆膜旱作水稻追肥困难,所有氮肥一次性基施,从而导致水稻氮素转运和累积与常规淹水栽培不同[11].拔节期,冠层比值植被指数(RVI)与施氮量、氮质量分数、氮肥利用效率、有效穗和穗粒数相关关系的决定系数高于差值和归一化植被指数.这与先前有关RVI与覆膜旱作水稻籽粒产量拟合度高的研究结果基本一致[20].基于比值植被指数RVI高光谱模型所估算的籽粒产量、氮质量分数、氮肥利用效率、有效穗、穗粒数和千粒质量分别与实测值之间存在显著正相关关系.本研究所构建的高光谱估算模型,可为水稻覆膜旱作水稻氮素营养诊断和优化氮肥管理,提供快速有效的原位无损检测方法.

参考文献 (20)

目录

/

返回文章
返回