留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

类石墨烯材料AlN单层膜德拜温度和热容量随温度的变化

上一篇

下一篇

何勇军, 周庭艳, 马朝科. 类石墨烯材料AlN单层膜德拜温度和热容量随温度的变化[J]. 西南大学学报(自然科学版), 2021, 43(1): 60-66. doi: 10.13718/j.cnki.xdzk.2021.01.007
引用本文: 何勇军, 周庭艳, 马朝科. 类石墨烯材料AlN单层膜德拜温度和热容量随温度的变化[J]. 西南大学学报(自然科学版), 2021, 43(1): 60-66. doi: 10.13718/j.cnki.xdzk.2021.01.007
HE Yong-jun, ZHOU Ting-yan, MA Chao-ke. Temperature Dependence of Debye Temperature and Heat Capacity of Graphene-Like AlN Monolayers[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 60-66. doi: 10.13718/j.cnki.xdzk.2021.01.007
Citation: HE Yong-jun, ZHOU Ting-yan, MA Chao-ke. Temperature Dependence of Debye Temperature and Heat Capacity of Graphene-Like AlN Monolayers[J]. Journal of Southwest University Natural Science Edition, 2021, 43(1): 60-66. doi: 10.13718/j.cnki.xdzk.2021.01.007

类石墨烯材料AlN单层膜德拜温度和热容量随温度的变化

  • 基金项目: 国家自然科学基金项目(11047147);教育部留学回国人员启动基金项目([2014]1685)
详细信息
    作者简介:

    何勇军,中学高级教师,主要从事固体统计理论研究 .

  • 中图分类号: O482.2

Temperature Dependence of Debye Temperature and Heat Capacity of Graphene-Like AlN Monolayers

  • 摘要: 在充分考虑原子非简谐振动的基础上,研究了氮化铝(aluminium nitrite,AIN)单层膜的键能、德拜温度和热容量随温度的变化规律.结果表明,研究相关热学参量时应考虑非简谐效应,温度越高,非简谐效应的影响越明显,第2非简谐效应的影响越显著. AlN单层膜的共价能、共价参量和极性参量均随温度呈非线性变化,在500~1 500 K的温度范围变化较快,高于1 500 K,变化逐步变缓,最终平稳.极低温下,键能随温度升高而线性地增大,高于150 K后,键能随温度升高而非线性地增大,且温度愈高,非简谐效应愈显著.德拜温度随温度升高而线性地增大.温度不太高时,定容比热随温度升高而线性地增大,温度较高时,定容比热随温度的升高逐步变缓.
  • 加载中
  • 图 1  类石墨烯AlN单层膜的结构示意图

    图 2  AlN单层膜σ键的共价能V2π键的共价能随温度的变化

    图 3  AlN单层膜共价参量和极性参量随温度的变化

    图 4  AlN单层膜σ键的键能随温度的变化

    图 5  AlN单层膜的德拜温度随温度的变化

    图 6  AlN单层膜定容比热随温度的变化

  • [1] 龙怡希, 任晓霞, 张皓. ZnS类石墨烯热膨胀系数、弹性模量以及有效电荷变化规律研究[J].西南师范大学学报(自然科学版), 2019, 44(9): 21-26. doi: http://www.cnki.com.cn/Article/CJFDTotal-XNZK201909005.htm
    [2] 申凤娟, 郑瑞伦.非简谐振动和吸附对金属基外延石墨烯吸附系统电导率的影响[J].西南大学学报(自然科学版), 2019, 41(11): 64-72. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.11.009
    [3] RAMAKRISHNA MATTE H, GOMATHI A, MANNA A, et al. MoS2 and WS2 Analogues of Graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009
    [4] LI D, KANER R B. MATERIALS SCIENCE: Graphene-Based Materials[J]. Science, 2008, 320(5880): 1170-1171. doi: 10.1126/science.1158180
    [5] YUN C, FENG Y B, QIU T, et al. Mechanical, Electrical, and Thermal Properties of Graphene Nanosheet/aluminum Nitride Composites[J]. Ceramics International, 2015, 41(7): 8643-8649. doi: 10.1016/j.ceramint.2015.03.075
    [6] TUMMALA R R. Ceramic and Glass-Ceramic Packaging in the 1990s[J]. Journal of the American Ceramic Society, 1991, 74(5): 895-908. doi: 10.1111/j.1151-2916.1991.tb04320.x
    [7] TURAN S, CINAR A, KAYA P. Microstructure-Thermal Conductivity Relationship in Pressureles Sintered AlN Ceramics for Energy Applications[C] //European Microscopy Congress 2016: Proceedings. Weinheim Germany: Willey-VCH Verlag GmbH & Co KGaA, 2016: 924-925.
    [8] JANKOWSKI K, RUTKOWSKI P, KATA D, et al. Microstructural Analysis of Aluminum Nitride-GPLS Composites[J]. Ceramics International, 2016, 42(7): 9025-9031. doi: 10.1016/j.ceramint.2016.02.143
    [9] doi: http://d.wanfangdata.com.cn/periodical/3d14e5ce6f57f3686699ea086e02bbe8 ZENG Q, CHEN Z L, ZHAO Y, et al. Graphene-assisted Growth of High-quality AlN by Metalorganic Chemical Vapor Deposition[J]. Japanese Journal of Applied Physics, 2016, 55(8): 085501-1-085501-5.
    [10] GEIM A K, GRIGORIEVA I V. Van Der Waals Heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi: 10.1038/nature12385
    [11] doi: https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111990765.html SINGH A K, ZHUANG H L, HENNIG R G. Ab Initiosynthesis of Single-layer Ⅲ-Ⅴ Materials[J]. Physical Review B, 2014, 89(24): 245431-1-245431-10.
    [12] DARVISH G M, DALIRANDEH Z, KHOSRAVI A, et al. Aluminum Nitride Graphene for DMMP Nerve Agent Adsorption and Detection[J]. Materials Chemistry and Physics, 2014, 145(1-2): 260-267. doi: 10.1016/j.matchemphys.2014.02.021
    [13] CAMACHO-MOJICA D C, LÓPEZ-URÍAS F. Extended Line Defects in BN, GaN, and AlN Semiconductor Materials: Graphene-like Structures[J]. Chemical Physics Letters, 2016, 652: 73-78. doi: 10.1016/j.cplett.2016.04.045
    [14] DAVYDOV S Y. On the Specific Features of the Density of States of Epitaxial Graphene Formed on Metal and Semiconductor Substrates[J]. Semiconductors, 2013, 47(1): 95-104. doi: 10.1134/S1063782613010090
    [15] DAVYDOV S YU, Вклад π-связей в эффективные заряды, энергию когезии и силовые константы графеноподобных соединений[J]. Физика твердого тела, 2016, 58(2): 392-399.
    [16] WANG X M, ZHANG L S, YANG C, et al. Estimation of Temperature-dependent Thermal Conductivity and Specific Heat Capacity for Charring Ablators[J]. International Journal of Heat and Mass Transfer, 2019, 129: 894-902. doi: 10.1016/j.ijheatmasstransfer.2018.10.014
    [17] QIAO G, LASFARGUES M, ALEXIADIS A, et al. Simulation and Experimental Study of the Specific Heat Capacity of Molten Salt Based Nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. doi: 10.1016/j.applthermaleng.2016.07.159
    [18] ORDONEZ-MIRANDA J, EZZAHRI Y, JOULAIN K, et al. Modeling of the Electrical Conductivity, Thermal Conductivity, and Specific Heat Capacity of VO2[J]. Physical Review B, 2018, 98(7): 075144. doi: 10.1103/PhysRevB.98.075144
    [19] 郑瑞伦, 胡先权.固体理论及其应用[M].重庆:西南师范大学出版社, 1996: 267-271.
    [20] 郑瑞伦, 胡先权.面心立方晶格的非简谐效应[J].大学物理, 1994, 13(5): 15-18.
    [21] DAVYDOV S Y. Estimating Anharmonic Characteristics of Single-sheet Graphene at High Temperatures[J]. Technical Physics Letters, 2011, 37(12): 1161-1164. doi: 10.1134/S1063785011120194
    [22] 阴知见, 邵天骄, 温斌.氮化铝热膨胀系数及高温弹性系数的第一性原理研究[J].燕山大学学报, 2013, 37(1): 27-33. doi: 10.3969/j.issn.1007-791X.2013.01.005
    [23] 郭连权, 张智勇, 刘嘉慧. A1N晶体声子谱及其热学性能的第一原理计算[J].沈阳工业大学学报, 2013, 35(6): 630-634. doi: http://qikan.cqvip.com/Qikan/Article/Detail?id=48034709
  • 加载中
图( 6)
计量
  • 文章访问数:  1200
  • HTML全文浏览数:  1200
  • PDF下载数:  305
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-22
  • 刊出日期:  2021-01-20

类石墨烯材料AlN单层膜德拜温度和热容量随温度的变化

    作者简介: 何勇军,中学高级教师,主要从事固体统计理论研究
  • 1. 重庆市第一中学,重庆 401329
  • 2. 重庆邮电大学 理学院,重庆 400065
  • 3. 西南大学 物理科学与技术学院,重庆 400715
基金项目:  国家自然科学基金项目(11047147);教育部留学回国人员启动基金项目([2014]1685)

摘要: 在充分考虑原子非简谐振动的基础上,研究了氮化铝(aluminium nitrite,AIN)单层膜的键能、德拜温度和热容量随温度的变化规律.结果表明,研究相关热学参量时应考虑非简谐效应,温度越高,非简谐效应的影响越明显,第2非简谐效应的影响越显著. AlN单层膜的共价能、共价参量和极性参量均随温度呈非线性变化,在500~1 500 K的温度范围变化较快,高于1 500 K,变化逐步变缓,最终平稳.极低温下,键能随温度升高而线性地增大,高于150 K后,键能随温度升高而非线性地增大,且温度愈高,非简谐效应愈显著.德拜温度随温度升高而线性地增大.温度不太高时,定容比热随温度升高而线性地增大,温度较高时,定容比热随温度的升高逐步变缓.

English Abstract

  • 石墨烯的发现及其研究热潮推动了其他二维层状材料,尤其是类石墨烯材料成为新材料的研究热点[1-2].金属硫族化合物材料(TMDs)[3]、过渡金属氧化物[4]和其他二维化合物已成为近年来人们高度关注的材料.氮化铝(aluminium nitrite,AlN)是一种重要的半导体材料,它的高电导率、低介电常数与易匹配的热膨胀系数等优异性能使它已成为一种极具吸引力的微电子封装材料[5-6].实验方面,2016年Turan等[7]通过压力烧结方法成功制备了AlN陶瓷材料,该材料可作为优质的储能材料;同时,Jankowski等[8]和Zeng等[9]从实验上成功制备了各种AlN纳米级薄膜或者切片,以及石墨烯与类石墨烯材料组成的复合薄膜.理论方面,文献[10-11]基于密度泛函理论计算了AlnN8-n类石墨烯化合物相关物性;Darvish等[12]利用vdW-DF法研究了以石墨烯为基底的AlN的DMMP吸附;Camacho-Mojica等[13]通过密度泛函方法研究了AlN薄膜的线缺陷;文献[14-15]利用了哈里森键联轨道法研究了二维化合物AlnN8-n类石墨烯的弹性和介电性质,以及π键和σ键的极性、键能、内聚能和有效原子电荷等.

    热容量是一个表征材料热学性能的重要物理量,在新材料和新电子器件设计中必须考虑热容量随温度的变化规律. Wang等[16]详细研究了炭化断路器的热容量,Qiao等[17]对纳米液体熔盐同时进行了实验和理论研究,Ordonez-Miranda等[18]对VO2的热容量进行了模拟,等等.虽然目前已对AlN单层膜的实验制备、几何结构,以及电学性能和力学性能进行了研究,但至今仍未发现对其热容量等热学性能的研究,更未从微观上讨论键能等微观结构对材料热学性能的定量影响.鉴于键能和德拜温度与热容量密切相关,本研究在考虑到原子的非简谐振动基础上,应用固体理论和方法,对类石墨烯AlN单层膜的键能和德拜温度进行了研究.在此基础上重点研究了AlN单层膜的热容量,以期有助于具有稳定热学性能的电子器件的研发.

  • 本研究采用的计算模型见图 1图 1中黑色原子(Al原子)和白色原子(N原子)构成二维六角格子平面系统.设Al原子和N原子数均为n,最近邻原子间距离为d,取任一原子为坐标原点,平面为oxy平面(图 1),z轴垂直纸面向外.

    平衡状态下AlN单层膜中一个原子的平均相互作用能为[15]

    其中:V1为金属化能;C=0.20 eV,用来描述短程作用[15]V2V2*分别为σ键和π键的共价能,V2*=η2ћ2/md2V2*=ηppπћ2/md2,这城d是最近邻原子间距离,ћ是普朗克常数,m是自由电子的质量.因为AlN单层膜为典型的sp2杂化,所以η=3.22,ηppπ=0.63[15]. αcαc*分别是σ键和π键的共价参量,定义为:

    另外,σ键和π键的极性参量定义为:

    其中:V3V3*分别为σ键和π键的极化能.

    T=0 K时各原子静止在平衡位置,键长为d0.任意温度下,键长为d,对平衡位置的位移为δ=d-d0.因热运动,原子在平衡位置沿键长方向作非简谐振动.将相互作用势展开为级数,则$\varphi (\delta ) = \varphi (0) + \frac{1}{2}{\varepsilon _0}{\delta ^2} + {\varepsilon _1}{\delta ^3} + {\varepsilon _2}{\delta ^3} + \cdots $.第2项为简谐项,第3项后各项分别称为第1、第2、……非简谐项,ε0ε1ε2,……分别称为简谐系数和第1、第2、……非简谐系数,由(1)式可得:

    一般情况下d(T)=d0+δ(T),其中原子平均位移δ(T)和线膨胀系数αl=(1/d0)(dδ/dT)分别为[19-20]

    T=0 K时,σ键和π键的共价能、极性参量和共价参量中原子间距均取d0.非零温情况下,因原子非简谐振动,键长变为

    使得σ键和π键的共价能变为

    将(10)式代入(3)式可求出极性参量和共价参量随温度的变化关系,从而由(1)式可得到类石墨烯的键能随温度的变化为

    德拜温度是二维材料热学性质的一个重要特征量.文献[21]给出简谐近似下二维六角结构的德拜温度θD0与简谐系数ε0的关系为

    其中:M为折合原子量,M-1=MAl-1+MN-1MAlMN分别为Al和N的原子量. (12)式中未考虑非简谐效应的影响,因而不能反映德拜温度的实际变化规律.利用振动频率ω与温度的关系式,可得到德拜温度θD与温度T的关系为[19]

    按照晶格热容的德拜理论,对由N个原胞组成的二维晶格,定容热容量为[20]

    而定容比热为

    式中:μ为折合摩尔质量,μ-1=μAl-1+μN-1μAlμN分别是Al和N的摩尔质量.

  • 文献[15]给出了AlN单层膜T=0 K时的几个参数,分别为d0=1.78×10-10 m,V1=3.15 eV,V2=7.84 eV,V3=1.52 eV,V2*=5.30 eV和V3*=0.98 eV.相应地,可算出T=0 K时的极性参量αp=0.56和共价参量αc=0.83.将这些数据以及C=0.20 eV代入(5)、(6)、(7)式,可求得AlN单层膜原子振动的几个参数:ε0=0.507×102 J/m2ε1=-0.947×1012 J/m3ε2=-0.225×1022 J/m4.将这些数据代入(10)式,可得到AlN单层膜σ键和π键的共价能随温度的变化(图 2),图 2中虚线、实线和点线分别对应只考虑简谐近似、计及第1非简谐项、计及第2非简谐项的结果.

    图 2看出,如果只考虑到简谐项,AlN单层膜σ键和π键的共价能均与温度无关;考虑到第1非简谐项,它们随温度升高而线性减小;考虑到第2非简谐项,它们随温度升高非线性减小.在500~1 500 K的温度范围变化较快,表明温度愈高,非简谐效应愈显著.超过1 500 K,变化逐步趋缓,最终平稳.

    将上述数据代入(3)式,可得到AlN单层膜σ键的共价参量和极性参量随温度的变化(图 3),图 3中虚线、实线和点线分别对应只考虑简谐近似、计及第1非简谐项、计及第2非简谐项的结果.

    图 3看出,简谐近似下,σ键的共价参量和极性参量均不变;只计及第1非简谐项时,共价能随温度升高而线性地缓慢变化;计及第2非简谐项时,共价参量随温度升高非线性减小.相反地,极性参量随温度升高而非线性增大.在400 K以下,共价参量变化极小,几乎保持为0.982,导致极性参量变化也极小,几乎保持为0.189.在400~1 500 K的温度范围变化较快,温度愈高,非简谐效应愈显著.高于1 500 K后逐步趋于稳定,T=2 000 K时共价参量约为0,从而使得极性参量接近于稳定值1.

    由(11)式,可得到AlN单层膜的键能随温度的变化(图 4),图 4中虚线、实线和点线分别对应只考虑简谐近似、计及第1非简谐项、计及第2非简谐项的结果.

    图 4看出,如果只考虑到简谐项,AlN单层膜σ键的键能与温度无关,保持为-1.800×10-18 J;考虑到第1非简谐项后,键能随温度升高而线性地缓慢增加;考虑到第2非简谐项,在极低温下(低于150 K),键能随温度的变化与只考虑到第1非简谐项相近,表明极低温下第2非简谐效应的影响较小.高于150 K后,键能随温度升高非线性增大,且温度愈高,变化越大,表明非简谐效应愈显著.

    将Al和N的原子量27和14个原子量单位与ε0ε1ε2代入(13)式,可得到AlN单层膜的德拜温度随温度的变化(图 5),图 5中虚线、实线和点线分别对应只考虑简谐近似、计及第1非简谐项、计及第2非简谐项的结果.

    图 5看出,简谐近似下,AlN单层膜的德拜温度与温度无关,始终为716.887 K.考虑到第1和第2非简谐项后,德拜温度均随温度升高而线性增大,表明温度愈高,非简谐效应愈显著.另外,此两种情况下的德拜温度差ΔθD=θD2-θD1随着温度升高而增大.例如,T为0,500,1 000,1 500,2 000 K时,ΔθD分别为0.000,8.660,17.319,25.978,34.638 K,表明第2非简谐效应对德拜温度的影响略大于第1非简谐效应,且温度越高,第2非简谐效应的影响越明显.实际上,德拜温度是反映材料中原子间结合力的一个重要物理量,德拜温度和原子振动频率上限成正比.一般地,德拜温度越高,原子间作用力越大,杨氏模量越大,振动频率越高.对AlN单层膜,温度越高,原子振动越强,因此振动频率越大,原子振动时偏离平衡位置的位移越大,使得非简谐效应随温度的升高越来越明显,从而导致了德拜温度随温度的变化逐步增大.因此,考虑第1和第2非简谐效应对应的德拜温差也随温度的升高而变大.

    由(15)式可得到AlN单层膜定容比热随温度的变化(图 6),图 6中虚线、实线和点线分别对应只考虑简谐近似、计及第1非简谐项、计及第2非简谐项的结果.

    图 6可看出,只考虑简谐效应时AlN单层膜的定容比热随温度的升高非线性地增大.一般地,定容热容量在温度较高时会趋于稳定,即随温度的变化逐步趋缓.因此,只考虑简谐效应,计算值与实际相差较大.当考虑到非简谐项后,AlN单层膜的定容比热在低温下与只考虑简谐效应时较为接近,但当温度高于200 K后,非简谐效应与简谐近似对应的定容比热的差Δcv=cv0-cv随温度升高而增大,即非简谐效应愈显著.尤其是,温度比较高时,非简谐效应对应的定容比热随温度的变化趋缓,逐步接近稳定,与实际比较相符.例如,T=1 000 K时,考虑非简谐效应后定容比热约为99.93 J/K,与第一性原理计算的三维AlN的定容比热以及实验值极为接近[22-23],而非简谐效应近似对应的高达260.55 J/K则相差极大.另外,考虑到第2非简谐项对应的值总是略低于只考虑第1非简谐项.表明二阶非简谐效应对定容比热有一定影响.

  • 基于上述研究可知,①研究相关热学参量时应考虑非简谐效应,温度越高,非简谐效应的影响越明显,第2非简谐效应的影响越显著. ② AlN单层膜的σ键和π键的共价能、共价参量和极性参量均随温度呈非线性变化,在500~1 500 K的温度范围变化较快,高于1 500 K,变化逐步变缓,最终平稳. ③在极低温下,键能随温度升高而线性地增大,高于150 K后,键能随温度升高而非线性地增大,且温度愈高,非简谐效应愈显著. ④德拜温度随温度升高而线性地增大. ⑤温度不太高时,定容比热随温度升高而线性地增大,温度较高时,定容比热随温度的升高逐步变缓.

参考文献 (23)

目录

/

返回文章
返回