-
设
$\varOmega \subset \mathbb{R}^{3} $ 是一个有界、连通区域并且有光滑边界Γ,单位外法向量记为ν. 已有许多工作研究了如下方程:这类方程主要用于粘弹性材料力学中. 对于这类方程,一些研究者通过研究一类抽象积分微分方程在函数空间中的渐近稳定性态,把最终结果应用于粘弹性中[1-3]. 在此基础上一些研究者将粘弹性方程转化在动力系统理论框架下[4-5]来讨论解的存在唯一性. 上面这类方程(1)也是在动力系统框架下,通过半群理论、Faedo-Galerkin等方法讨论解的存在唯一性问题[6-7]. 后来,一些研究者研究了如下方程:
这类是含有内部阻尼项并且边界项为0的粘弹性方程. 现在大部分文章都是讨论非线性阻尼项在内部解的存在唯一性[8],而边界阻尼的情形考虑不多[9]. 本文将研究非线性阻尼项在边界且满足Neumann边界条件解的存在唯一性问题. 考虑方程如下:
在这个方程中f和g都是非线性项;u=u(x,t)是实值函数,代表位移矢量. 为了将方程(3)转化成某个相空间的自治动力系统,根据文献[5],对于这类带记忆项的双曲型的阻尼波方程引入新的变量:
对式(4)中的t求导得
同时,令μ(s)=-k′(s)且k(∞)=1,定义v=ut,则方程(3)可以转化为如下形式:
为了让方程(6)更加精确,根据文献[10],可以引入线性算子:
则方程(6)可以转化为如下形式:
其初值条件为
通常记忆项μ满足如下假设条件[6]:
(h1)
$\mu \in C^{1}\left(\mathbb{R}^{+}\right) \cap L^{1}\left(\mathbb{R}^{+}\right), \forall s \in \mathbb{R}^{+} ; $ (h2)
$\mu(s) \geqslant 0 且 \mu^{\prime}(s) \leqslant 0, \forall s \in \mathbb{R}^{+} ; $ (h3)
$\int_{0}^{\infty} \mu(s) \mathrm{d} s=\kappa_{0}>0 ; $ (h4)
$\mu^{\prime}(s)+\delta \mu(s) \leqslant 0, \forall s \in \mathbb{R}^{+} 且 \delta>0 . $ 对非线性项f做如下假设[6]:
(f1)
$f \in C^{1}(\mathbb{R}), 并定义 F(s)=\int_{0}^{s} f(y) \mathrm{d} y ; $ (f2)
$\mathop {\lim {\kern 1pt} \inf }\limits_{|y| \rightarrow \infty} \frac{F(y)}{y^{2}} \geqslant 0; $ (f3)
$|f(y)| \leqslant \varGamma y $ 对非线性项g做如下假设[6]:
(g1)
$f \in C^{1}(\mathbb{R}) $ 且g(0)=0. g是一个增函数,0≤m1≤g′(s)≤m2<∞,|s|>R.
全文HTML
-
设
$\varOmega \subset \mathbb{R}^{3} $ 是一个有界、连通区域并且有一个光滑的边界Γ. 本文所涉及函数空间L2(Ω)的内积为且相应的范数被定义为
我们定义L2(Ω)上的正定算子A=-Δ,其中dom(A)=H1(Ω). 当γ≥0时,我们定义紧嵌入Hilbert空间,
$\operatorname{dom}\left(A^{\frac{\gamma}{2}}\right)=H^{\frac{\gamma}{2}}(\varOmega) $ ,范数和内积分别定义为$\|u\|_{\gamma}=\left\|A^{\frac{\gamma}{2}} u\right\| $ ,$(u, v)_{\gamma}=\left(A^{\frac{\gamma}{2}} u, A^{\frac{\gamma}{2}} v\right) $ . 参照文献[8],定义$L_{\mu}{ }^{2}\left(\mathbb{R}^{+}, H^{1}\right) $ 为在$\mathbb{R}^{+} $ 上的H1-值的Hilbert空间,具有下面的内积和范数
由(h4)可知
最后定义乘积Hilbert空间:
$\mathscr{H}=H^{1} \times L^{2} \times L_{\mu}{ }^{2}\left(\mathbb{R}^{+}, H^{1}\right) $ . 其内积为范数为
定义1[11] 设A:D(A)⊂H→H是一个无界线性算子,称A是单调的,如果(Av,v)≥0,∀v∈D(A);A称为极大单调的,如果R(I+A)=H也成立,即∀f∈H,∃u∈D(A)使得u+Au=f.
引理1[11] 设A是Hilbert空间H中的极大单调算子. 那么,任给u0∈D(A),存在唯一的函数:
满足
此外,我们有
命题1[12] 设Φ是
$W \longrightarrow \mathbb{R}^{\infty} $ 上的凸泛函,Λ是V→W上的线性连续算子. 如果Φ在Λ的某些值域上连续,$ \partial(\varPhi \circ \varLambda)=\varPhi^{\prime} \cdot \partial(\varPhi) \cdot \varLambda$ .
-
本文在文献[9]的基础上,对方程(7)的解的存在唯一性进行了研究. 将利用最大单调算子理论证明全局解的存在性与唯一性.
定理1 假设满足条件(h1)-(h4),(f1)-(f3),(g1),当(u0,v0,η0)∈D(A)时,方程(3)在有限区间[0,T]上存在唯一的强解(u, v,η). 当T→∞时,能量方程E(t)是有界的且只与初值有关,则方程(3)存在唯一的全局解(u,v,η).
证 1) 首先证明局部解的存在性与唯一性.
我们的首要目标是对方程(7)做关于最大单调算子理论的构想. 为了达到目的,引入Neumann拉普拉斯算子ΔN:L2(Ω)→L2(Ω). 这是一个无界算子,定义域为
由于这个算子是单射且是自伴的,因此Neumann拉普拉斯算子可以扩张成连续算子ΔN:H1(Ω)→(H1(Ω))′,并且可以定义正定算子-ΔN的分数幂形式. 参考文献[13],分数幂算子
$ \left(-\varDelta_{N}\right)^{\frac{1}{2}}$ 的定义域与H1(Ω)同构,即$D\left(\left(-\varDelta_{N}\right)^{\frac{1}{2}}\right) \sim H^{1}(\varOmega) $ .下面引入Neumann映射[14]N:H1(Γ)→(H1(Ω))′. 定义如下:
同理可以定义Neumann映射的对偶映射N*:
$\left(H^{1}(\varOmega)\right)^{\prime} \longrightarrow\left(H^{-\frac{1}{2}}(\varGamma)\right)^{\prime} $ . 令$p \in H^{-\frac{1}{2}}(\varGamma) $ 且v∈D(ΔN),由此可得对偶映射满足
$N^{*} \varDelta_{N} v=-\gamma_{v}=-\left.v\right|_{\varGamma}, \forall v \in H^{1}(\varOmega)=D\left(\left(-\varDelta_{N}\right)^{\frac{1}{2}}\right) $ . 所以可以引入非线性算子A,其中A是
$\mathscr{H} $ 上的非线性算子,可定义因此可以把方程(7)写成类似于常微分方程的变分形式,即
显然方程(13)右端项-f(u)满足局部Lipschitz条件. 要证明方程局部解的存在唯一性,需要利用最大单调算子理论,证明A是最大单调算子,即根据定义1证明:
$\left\langle A z_{1}-A z_{2}, z_{1}-z_{2}\right\rangle_{\mathscr{H} } \geqslant 0, \forall z_{1}, z_{2} \in D(A) $ 且$ \operatorname{range}(A+I)=\mathscr{H}$ .令∀z1,z2∈D(A),其中z1=(u1,v1,η1),z2=(u2,v2,η2),有
进一步由(g1)和(10)式可知对
$\forall z_{1}, z_{2} \in D(A), \left\langle A z_{1}-A z_{2}, z_{1}-z_{2}\right\rangle_{\mathscr{H}} \geqslant 0 $ .接下来,需要证明A+I是满射. 令
$({\mathop u\limits^ \wedge}, {\mathop v\limits^ \wedge}, {\mathop \eta\limits^ \wedge}) \in \mathscr{H} $ ,故由(14)式得
将(15)式代入(14)
式中
其中设
整理方程(16)得:
取d=1,(17)式即为:
显然,
$ {w = \mathop v\limits^ \wedge - A\mathop u\limits^ \wedge - \int_0^\infty \mu (s)\left( {\int_0^s {{e^{\delta - s}}} A\mathop \eta \limits^ \wedge (\delta ){\rm{d}}\delta } \right){\rm{d}}s \in {{\left( {{H^1}(\mathit{\Omega })} \right)}^\prime }}$ 且${B = {\gamma ^*}g\gamma } $ . 根据文献[15],若${ - {\mathit{\Delta }_N} + (I + B)} $ 在${{H^1}(\mathit{\Omega }) \to {{\left( {{H^1}(\mathit{\Omega })} \right)}^\prime }} $ 上是满射当且仅当I+B是最大单调算子. 故令${B = \partial (\mathit{\Phi } \circ \gamma )} $ ,其中$ {\mathit{\Phi }(v) = \int_\mathit{\Gamma } \phi (v)}$ 且$ {\phi (s) = \int_0^s g (\tau ){\rm{d}}\tau }$ .由函数g的(g1)假设可知,对
$\forall v \in H^{\frac{1}{2}} $ ,Φ(v)是连续的并且Φ是凸泛函. 根据命题1,$\varPhi \circ \gamma $ 是泛函,则次梯度凸泛函是最大单调算子. 也就是说B是最大单调算子. 虽然算子I在$H^{1}(\varOmega) \longrightarrow\left(H^{1}(\varOmega)\right)^{\prime} $ 的映射是有界、半连续、单调的,但I+B也是最大单调算子[15],从而得出${\rm{range}} (A+I)=\mathscr{H} $ .现在根据算子理论来解决方程(3)的初值问题. 根据上述证明可知方程(13)是一个具有最大单调算子的有局部Lipschitz扰动的发展方程. 因此,当(u0,v0,η0)∈D(A)时,方程(3)在有限区间[0,T]上存在唯一的强解(u,v,η).
2) 证明当T→∞时,方程(3)仍然存在唯一的解(u,v,η),即强解是全局解. 首先对(3)式的第一个等式乘以ut得
则能量等式
所以由(19)-(20)式得
由(g1),(f2)和(10)式可知,(21)式左边4项均大于等于0. 故一定存在
由Gronwall引理得
最终得出
运用最大单调算子理论知结论成立.