留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一般超线性项的Klein-Gordon-Maxwell系统解的多重性

上一篇

下一篇

段誉, 孙歆, 安育成. 一般超线性项的Klein-Gordon-Maxwell系统解的多重性[J]. 西南师范大学学报(自然科学版), 2021, 46(12): 13-19. doi: 10.13718/j.cnki.xsxb.2021.12.003
引用本文: 段誉, 孙歆, 安育成. 一般超线性项的Klein-Gordon-Maxwell系统解的多重性[J]. 西南师范大学学报(自然科学版), 2021, 46(12): 13-19. doi: 10.13718/j.cnki.xsxb.2021.12.003
DUAN Yu, SUN Xin, AN Yucheng. Multiplicity of Solutions for Klein-Gordon-Maxwell Systems with General Superlinear Nonlinearity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(12): 13-19. doi: 10.13718/j.cnki.xsxb.2021.12.003
Citation: DUAN Yu, SUN Xin, AN Yucheng. Multiplicity of Solutions for Klein-Gordon-Maxwell Systems with General Superlinear Nonlinearity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(12): 13-19. doi: 10.13718/j.cnki.xsxb.2021.12.003

一般超线性项的Klein-Gordon-Maxwell系统解的多重性

  • 基金项目: 国家自然科学基金项目(11661021);贵州省普通高等学校科技拔尖人才项目(黔教合KY字[2019]065);贵州省教育厅青年科技人才成长项目(KY[2020]144);毕节市自然科学基金项目(毕科联合字G[2019]11号)
详细信息
    作者简介:

    段誉,博士,副教授,主要从事非线性泛函分析的研究 .

  • 中图分类号: O176.3

Multiplicity of Solutions for Klein-Gordon-Maxwell Systems with General Superlinear Nonlinearity

计量
  • 文章访问数:  788
  • HTML全文浏览数:  788
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-27
  • 刊出日期:  2021-12-20

一般超线性项的Klein-Gordon-Maxwell系统解的多重性

    作者简介: 段誉,博士,副教授,主要从事非线性泛函分析的研究
  • 贵州工程应用技术学院 理学院,贵州 毕节 551700
基金项目:  国家自然科学基金项目(11661021);贵州省普通高等学校科技拔尖人才项目(黔教合KY字[2019]065);贵州省教育厅青年科技人才成长项目(KY[2020]144);毕节市自然科学基金项目(毕科联合字G[2019]11号)

摘要: 研究了一类具有凹凸非线性项的Klein-Gordon-Maxwell系统解的多重性. 当凸项在无穷远处满足更弱的超线性增长条件且在位势函数是变号的情形下,利用变分方法获得了系统解的多重性结果. 推广和完善了相关问题的已有结果.

English Abstract

  • 研究如下Klein-Gordon-Maxwell系统:

    其中ω>0是一个常数,fC($\mathbb{R} $3×$\mathbb{R} $$\mathbb{R} $)和VC($\mathbb{R} $3$\mathbb{R} $)是变号的. 系统(1)起源于数学物理领域中的某些应用问题. 为了描述三维空间中非线性Klein-Gordon场与静电场之间相互作用所产生的孤立波问题,文献[1]首次提出了Klein-Gordon-Maxwell系统模型

    其中0 < ω < m0,4 < q < 6,m0e分别表示粒子的质量和电量,而ω表示相位.系统的未知因素是联系粒子的场u和电磁位势ϕ. 有关系统(2)物理方面的详述可参见文献[1-2]. 作为系统(2)的一般情形,系统(1)近年来受到了众多学者的关注. 当非线性项f满足(AR)条件时,文献[3]首次研究了系统(1)无穷多解的存在性. 文献[4-7]在非线性项f满足超三次增长性条件但不满足(AR)条件时,获得了与文献[3]相同的结果. 文献[8-11]通过弱化非线性项f所满足的条件,改进了上述所提文献的结论. 在位势是消失位势的情形下,文献[12-14]讨论了系统(1)解的存在性和多重性问题. 当位势V=1时,文献[15-16]讨论了系统(1)解的存在性和多重性问题. 在位势是井位势的情形下,文献[17-19]分别讨论了系统(1)基态解的存在性和解的多重性问题. 尤其需要指出的是:文献[20]在位势函数V和非线性项f允许变号的情形下研究了系统(1)解的多解性,得到了如下结果:

    定理A[20]   设Vf=f满足如下假设条件:

    (V) VC($\mathbb{R} $3$\mathbb{R} $),$\mathop {\rm inf}\limits_{x \in {\mathbb{R}^3}} V(x) $>-∞,且存在r>0,使得对∀M>0,有

    (F1) 存在常数c1>0,2 < p < 2* = 6,使得$\left| {\bar f(x, t)} \right| \le {c_1}(\left| t \right| + {\left| t \right|^{p - 1}}) $),∀(xt)∈$\mathbb{R} $3×$\mathbb{R} $

    (F2) $\mathop {\lim }\limits_{\left| t \right| \to \infty } \frac{{\bar F(x, t)}}{{{{\left| t \right|}^2}}} = + \infty $关于x$\mathbb{R} $3一致成立,且存在R>0,使得当|t|≥R时,对∀x$\mathbb{R} $3F(xt)≥0,其中F(xt)= $\int_0^t {\bar f(x,s){\rm {d}}s} $

    (F3) f(x,-t)=-f(xt),∀(xt)∈$\mathbb{R} $3×$\mathbb{R} $

    (F4) 存在θ>0,μ>2,使得f(xt)t-μF(xt)≥-θ|t|2,∀(xt)∈$\mathbb{R} $3×$\mathbb{R} $. 则系统(1)存在一列高能量解.

    本文考虑的问题是:在条件(F4)中,若μ=2,系统(1)是否仍存在一列高能量解? 受文献[9, 20]的启发,本文主要考虑了当μ=2且具有凹项扰动项时系统(1)解的多重性,所得结论推广和完善了已有文献的相关结果. 相关概念和符号可参见文献[21-23]. 本文主要结果如下:

    定理1  假设V满足条件(V),F(xt)=F(xt)+λα(x)|t|sf(F1)-(F3)及如下条件:

    (F4) 存在常数r0>0,c2≥0,使得当|t|≥r0时,对∀x$\mathbb{R} $3

    (F5) $\alpha (x) \in {L^{\frac{2}{{2 - s}}}} $($\mathbb{R} $3),1<s < 2,α(x)≥ 0,∀x$\mathbb{R} $3.

    则对∀λ$\mathbb{R} $,系统(1)有一列高能量解.

    定理2  假设V满足条件(V),F(xt)=F(xt)+λα(x)|t|sf满足条件(F1)-(F5),则对∀λ$\mathbb{R} $+,系统(1)有一列负能量解.

    注1  确实存在函数满足条件(F1)-(F4)但不满足定理A中的(AR)条件((F4)(见文献[9]的注1.4).

    注2  定理1从两个方面改进了定理A:定理1通过弱化定理A的条件(见注1)获得了与定理A相同的结果;在非线性项是凹凸非线性项的组合项条件下给出了系统(1)有一列负能量解的多重性结果.

    注3  与文献[9]的结论相比,本文去掉了非线性项f在原点处是超线性的这一限制条件,在位势函数V和凸非线性项f允许变号,且扰动项是更一般的凹项的情形下,研究了系统(1)解的多重性.

    因此,定理1改进并完善了上述已有文献的相关结果.

    D1,2($\mathbb{R} $3)={uL6($\mathbb{R} $3):|▽u|∈L2($\mathbb{R} $3)}表示Sobolev空间,其范数定义为

    H1($\mathbb{R} $3)={uL2($\mathbb{R} $3):|▽u|∈L2($\mathbb{R} $3)}表示通常的Sobolev空间,其内积和范数分别定义为

    由条件(V),(F1)-(F2)知,存在a>0,使得对∀(xt)∈$\mathbb{R} $3×$\mathbb{R} $$\tilde V(x) $=V(x)+a≥ 1,2F(xt)+at2≥0. 令

    H是Hilbert空间,其内积和范数分别定义为

    显然,对2≤p≤6,嵌入映射H Lp($\mathbb{R} $3)是连续的,故存在Sp>0,使得

    系统(1)具有变分结构,对∀(uϕ)∈H×D1,2($\mathbb{R} $3),定义其能量泛函为

    由条件(V),(F1)知,系统(1)的弱解(uϕ)∈H×D1,2($\mathbb{R} $3)对应着泛函J的临界点. 由于J是强不定的,需要对泛函进行一些简化,将泛函J转化成只含有一个变量u的式子. 为此,给出如下引理:

    引理1[3]  对∀uH1($\mathbb{R} $3),存在唯一的ϕ=ϕuD1,2($\mathbb{R} $3),满足方程

    更进一步,映射ΦuH1($\mathbb{R} $3)↦Φ[u]=ϕuD1,2($\mathbb{R} $3)是连续可微的,并且满足:

    (i) 在集合{xu(x)≠0}上,-ωϕu≤0;

    (ii) ${\left\| {{\phi _u}} \right\|_{{D^{1,2}}}} \le C\left\| u \right\|_{{H^1}}^2 $,且$\int {_{{\mathbb{R}^3}}} \left| {{\phi _u}} \right|{u^2}{\rm d}x \le C\left\| u \right\|_{\frac{{12}}{5}}^4 \le \left\| u \right\|_{{H^1}}^4 $.

    在(4)式左右两端同时乘ϕu,并分部积分,可得

    从而结合(5)式及J的定义知,I(u)=J(uϕu)可化简为

    由条件(V),(F1)-(F3)及引理1易知,I定义在空间H上是有意义的,且IC1(H$\mathbb{R} $),其所对应的导数为

    由文献[1]的命题3.5知,u是泛函I的临界点当且仅当(uϕ)∈H×D1,2($\mathbb{R} $3)是系统(1)的解,并且ϕ=ϕu. 因此,为了得到系统(1)的非零解,我们只需寻找泛函I的非零的临界点即可.

    BR={x$\mathbb{R} $3:|x| < R},BRC=$\mathbb{R} $3\BR={x$\mathbb{R} $3:|x|≥R}. 令{ei}为空间H的一组正交基. Xi=$\mathbb{R} $eiYk=⊕i=1kXiZk=⊕i=k+1Xik$\mathbb{N} $+.

    引理2  假设条件(V),(F1)-(F2),(F4)-(F5)成立,则泛函I(u)满足(PS)c条件.

      设{un}⊂H是泛函I的任一(PS)c序列,即

    从而存在常数M>0,使得

    首先证明(PS)c序列{un}有界. 采用反证法. 假设存在{un}的一个子列(不失一般性,仍记此子列为{un}),使得‖un‖→∞. 令$ $,则‖ωn‖=1. 因为对2≤p < 6,嵌入映射H Lp($\mathbb{R} $3)是紧的,所以存在{ωn}的一个子列(不失一般性,仍记之为{ωn})和ω0H,使得:ωnω0(xH);ωnω0 (xLp($\mathbb{R} $3));ωn(x)→ω0(x)(a.e.x$\mathbb{R} $3). 令Ω={y$\mathbb{R} $3ω0(y)≠0}. 若meas(Ω)>0,则|un|=|ωn|‖un‖ ∞(a.e.xΩn→∞).

    由条件(F2)和Fatou引理知

    而由引理1(i)及(6)式知,当n→∞时,

    这显然与(7)式是矛盾的. 故meas(Ω)=0,这意味着ω0=0,ωn→0(xLp($\mathbb{R} $3),2≤p < 6).

    由条件(F1)知,对任意的x$\mathbb{R} $3,|u|≤r0,有

    故结合条件(F4)及引理1(i)知

    这意味着

    由条件(F1)知,对∀(xu)∈$\mathbb{R} $3×$\mathbb{R} $

    结合(6),(8),(9)式及引理1(i)知,当n→∞时

    这显然是矛盾的,故序列{un}是有界的.

    其次证明{un}在空间H中有一个强收敛的子列. 因为

    所以由文献[8]中引理3.3的证明可知:要证明unu(xHn→ ∞),只需证明当n→∞时,

    即可. 因为对2≤p < 6,嵌入映射HLp( $ \mathbb{R}^{3}$)是紧的,所以当n→∞时,

    引理3  假设条件(F1)-(F5)成立,则:

    (i) 存在γ>0,ρ>0,使得$I\left| {_{\partial {B_\rho } \cap {Z_k}}} \right. \ge \gamma $

    (ii) 对任意的有限维子空间$\tilde E \subset H $,存在R=R($\tilde E$)>0,使得$I\left| {_{\tilde E\backslash {B_R}}} \right. $ < 0.

    (i) 令$ {\beta _k} = \mathop {\sup }\limits_{u \in {Z_k}, \left\| u \right\| = 1} {\left\| u \right\|_p}(2 \le p \le 6)$,则βk →0(k→∞). 从而存在k1>1,使得当k>k1时,

    因为1 < s < 2,所以存在R0>0,使得

    由(9),(11)-(12)式及引理1(i)知,∀uZk,‖u‖≥R0

    $\rho = {(4\beta _k^p{c_1})^{\frac{1}{{2 - p}}}}, \gamma = (\frac{1}{8} - \frac{1}{{4p}}){\rho ^2} $,则ρ→∞(k →∞),且γ>0. 从而存在k2>1,使得当k>k2时,ρ>R0. 故当k>max{k1k2},uZk,‖u‖=ρ时,I(u)≥ $(\frac{1}{8} - \frac{1}{{4p}}){\rho ^2} $=γ>0.

    (ii) 设$\tilde E \subset H $是任一有限维子空间. 利用反证法证明. 假设存在一列序列{un}⊂ $\tilde E $,满足‖un‖→∞,但I(un)≥0. 令${v_n} = \frac{{{u_n}}}{{\left\| {{u_n}} \right\|}} $,则‖vn‖=1. 因为$\tilde E \subset H $是有限维子空间,所以存在{vn}的一个子列(不失一般性,仍记之为{vn})和v0$\tilde E $,使得vnv0(x∈ $\tilde E $),‖v0‖=1. 故由条件(F2)及Fatou引理知

    这显然是矛盾的,故存在R=R($\tilde E $)>0使得$I\left| {_{\tilde E\backslash {B_R}}} \right. $ < 0.

    引理4   假设条件(F1)-(F5)成立,则存在k0$\mathbb{N} $+使得ρk>γk>0,且满足:

    (i) ${a_k} = \mathop {\inf }\limits_{u \in {Z_k}, \left\| u \right\| = {\rho _k}} I(u) $≥0;

    (ii) ${b_k} = \mathop {\max }\limits_{u \in {Y_k}, \left\| u \right\| = {\gamma _k}} I(u) $ < 0;

    (iii) ${d_k} = \mathop {\inf }\limits_{u \in {Z_k}, \left\| u \right\| \le {\rho _k}} I(u)$→0(k→+∞).

      因为2 < p < 6,所以存在R0>0使得

    由(3),(9),(11),(13)式及引理1(i)知,对∀uZk

    ${\rho _k} = 8{(\beta _k^ss\lambda {\left\| \alpha \right\|_{\frac{2}{{2 - s}}}})^{_{\frac{1}{{2 - s}}}}} $,则ρk→0(k→+∞). 从而存在k0>0,使得当k>k0γk < R0. 故当k>max{k1k0},uZk,‖u‖=ρk时,

    即(i)成立.

    (ii) 对∀uYkδ>0,令Γαδ(u)={x$\mathbb{R} $3α(x)|u|sδus},由文献[4]中定理1.5的证明过程可知,存在ε1>0,使得meas(Γαε1(u))≥ε1.

    故结合条件(F4),(9)式及引理1(i)知,对∀uYk

    因为1 < s < 2,所以存在γk∈(0,ρk),使得当uYk,‖u‖=γkI(u)≤0,即(ii)成立.

    (iii) 由(14)式,对∀uZk${\left\| u \right\| \le {\rho _k}}$,有

    因为ρk→0,k→+∞,所以$\mathop {\inf }\limits_{u \in {Z_k}, \left\| u \right\| \le {\rho _k}} I(u) $→0(k→+∞),即(iii)成立.

    定理1的证明  由条件(F3)知泛函I是偶的,且由引理2及引理3知,能量泛函I满足对称山路定理(见文献[21]的定理9.12)的条件,故由对称山路定理知,I有一列趋于+∞的临界值. 即系统(1)具有一列高能量解.

    定理2的证明  由条件(F3)知泛函I是偶的,且由引理2及引理4知,能量泛函I满足对偶喷泉定理(见文献[22]的定理3.18)的条件,故由对偶喷泉定理知,I有一列趋于0的负的临界值. 即系统(1)存在一列负能量解.

参考文献 (23)

目录

/

返回文章
返回