BENCI V, FORTUNATO D F. Solitary Waves of the Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations [J]. Reviews in Mathematical Physics, 2002, 14(4): 409-420. doi: 10.1142/S0129055X02001168
BENCI V, FORTUNATO D. The Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations [J]. Nonlinear Analysis: Theory, Methods and Applications, 2001, 47(9): 6065-6072. doi: 10.1016/S0362-546X(01)00688-5
HE X M. Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System [J]. Acta Applicandae Mathematicae, 2014, 130(1): 237-250. doi: 10.1007/s10440-013-9845-0
LI L, TANG C L. Infinitely Many Solutions for a Nonlinear Klein-Gordon-Maxwell System [J]. Nonlinear Analysis: Theory, Methods and Applications, 2014, 110(2): 157-169.
DING L, LI L. Infinitely Many Standing Wave Solutions for the Nonlinear Klein-Gordon-Maxwell System with Sign-Changing Potential [J]. Computers and Mathematics with Applications, 2014, 68(5): 589-595. doi: 10.1016/j.camwa.2014.07.001
CHE G F, CHEN H B. Existence and Multiplicity of Nontrivial Solutions for Klein-Gordon-Maxwell System with a Parameter [J]. Journal of the Korean Mathematical Society, 2017, 54(3): 1015-1030. doi: 10.4134/JKMS.j160344
廖坤, 段春生, 李麟, 等. 具有变号位势的Klein-Gordon-Maxwell系统孤立波的存在性[J]. 西南大学学报(自然科学版), 2018, 40(5): 89-93.
CHEN S J, SONG S Z. Multiple Solutions for Nonhomogeneous Klein-Gordon-Maxwell Equations on $\mathbb{R} $3 [J]. Nonlinear Analysis: Real World Applications, 2015, 22: 259-271. doi: 10.1016/j.nonrwa.2014.09.006
WU D L, LIN H X. Multiple Solutions for Superlinear Klein-Gordon-Maxwell Equations [J]. Mathematische Nachrichten, 2020, 293(9): 1827-1835. doi: 10.1002/mana.201900129
WANG L X. Two Solutions for a Nonhomogeneous Klein-Gordon-Maxwell System [J]. Electronic Journal of Qualitative Theory of Differential Equations, 2019, 40: 1-12.
陈尚杰, 李麟. 一类$\mathbb{R} $3上非齐次Klein-Gordon-Maxwell方程解的存在性[J]. 西南师范大学学报(自然科学版), 2013, 38(4): 35-39. doi: 10.3969/j.issn.1000-5471.2013.04.010
CHEN S J, LI L. Infinitely Many Solutions for Klein-Gordon-Maxwell System with Potentials Vanishing at Infinity [J]. Zeitschrift Für Analysis und Ihre Anwendungen, 2018, 37(1): 39-50. doi: 10.4171/ZAA/1601
DE MOURA E L, MIYAGAKI O H, RUVIARO R. Positive Ground State Solutions for Quasicritical Klein-Gordon-Maxwell Type Systems with Potential Vanishing at Infinity [J]. Electronic Journal of Differential Equations, 2017, 154: 1-11.
MIYAGAKI O H, DE MOURA E L, RUVIARO R. Positive Ground State Solutions for Quasicritical the Fractional Klein-Gordon-Maxwell System with Potential Vanishing at Infinity [J]. Complex Variables and Elliptic Equations, 2019, 64(2): 315-329. doi: 10.1080/17476933.2018.1434625
XU L P, CHEN H B. Existence and Multiplicity of Solutions for Nonhomogeneous Klein-Gordon-Maxwell Equations [J]. Electronic Journal of Differential Equations, 2015, 102: 1-12.
陈丽珍, 李安然, 李刚. 带有次线性项和超线性项的Klein-Gordon-Maxwell系统多重解的存在性[J]. 数学物理学报, 2017, 37(4): 663-670.
LIU X Q, CHEN S J, TANG C L. Ground State Solutions for Klein-Gordon-Maxwell System with Steep Potential Well [J]. Applied Mathematics Letters, 2019, 90: 175-180. doi: 10.1016/j.aml.2018.11.002
GAN C L, XIAO T, ZHANG Q F. Improved Results of Nontrivial Solutions for a Nonlinear Nonhomogeneous Klein-Gordon-Maxwell System Involving Sign-changing Potential [J]. Advance in Difference Equations, 2020, 167: 1-16.
ZHANG Q F, GAN C L, XIAO T, et al. An Improved Result for Klein-Gordon-Maxwell Systems with Steep Potential Well [J]. Mathematical Methods in the Applied Sciences, 2020, 2020: 1-7.
CHEN S T, TANG X H. Infinitely Many Solutions and Least Energy Solutions for Klein-Gordon-Maxwell Systems with General Superlinear Nonlinearity [J]. Computers and Mathematics with Applications, 2018, 75(9): 3358-3366. doi: 10.1016/j.camwa.2018.02.004
RABINOWITZ P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M]. Providence, Rhode Island: American Mathematical Society, 1986.
WILLEM M. Minimax Theorems [M]. Boston, MA: Birkhäuser, 1996.
梁冬冬. 无限维空间上的波方程和Schrödinger方程解的存在性和唯一性[J]. 四川大学学报(自然科学版), 2021, 58(1): 20-26.