-
开放科学(资源服务)标志码(OSID):
-
随着现代信息技术的飞速发展,信息存储的高密化和高速化逐步成为必然要求. 光学体全息存储技术因具有高存储密度、高冗余度、并行寻址和快速存取等诸多优点而成为新一代存储方案[1]. 以优良光折变特性著称的铌酸锂晶体(LiNbO3,LN)是实现全息存储的首选材料之一. 纯LiNbO3晶体在存取过程中信息易挥发,为此人们选择在LiNbO3晶体中掺入两种光折变离子使其禁带内形成两个光折变陷阱中心,进而在LiNbO3晶体中实现持久性全息存储.
在1998年,Buse等人[1]已经利用Fe和Mn双掺LiNbO3晶体实现了信息的非挥发性存储;Yue等人[2]在Mn和Ce双掺的存储实验中观察到明显的光致变色效应,这与双中心持久性数据存储有关;Kang等人[3]测量了Ce和Mn双掺LiNbO3的光伏常数和光电导率;Wang等人[4]分析了Li与Nb不同摩尔比的条件下Ce和Mn双掺LiNbO3晶体的光学性质. 尽管Mn和Ce双掺LiNbO3晶体在存储时间和灵敏度等方面表现良好,但存在响应时间长、光致散射严重等不利影响,严重影响该材料的实际应用[5],加入Zn或Mg等抗光损伤元素能有效改善这些问题[6]. 实验上关于Mn和Ce,Mn和Fe双掺LiNbO3晶体的光学性质和存储的研究较为常见,但Mn和Ce双掺或Mn,Ce和Zn三掺晶体内部电荷迁移等机制(如杂质元素占位、电子跃迁机制)的研究鲜有报道.
本研究利用第一性原理,分别计算了Mn和Ce单掺、双掺及Mn,Ce和Zn三掺等多种掺杂LiNbO3体系的能带、电子结构以及吸收光谱,希望通过研究电荷跃迁机理,更好地为体全息存储器性能优化、参数设置等提供理论和数据支持.
Study on the Electronic Structures and the Absorption Spectra of Mn, Ce and Zn Triple-doped LiNbO3 Crystals
-
摘要: 利用第一性原理, 研究了Mn, Ce, Zn三掺铌酸锂(LiNbO3, LN)晶体及对比组的电子结构和光学特性. 结果显示, Mn或Ce单掺LiNbO3晶体的杂质能级分别由Mn 3d和Ce 4f轨道电子贡献; Mn和Ce双掺样本LNⅢ在3.34, 2.87, 2.42和1.42 eV产生光吸收; Mn, Ce和Zn三掺样本LNⅣ的吸收峰出现在3.13, 2.73, 2.38, 1.90, 1.65 eV等处; 当掺Zn2+的摩尔分数达阈值(约7%)时, 三掺样本LNⅤ吸收峰出现在2.87, 2.42, 1.78和1.53 eV附近. 比较双掺以及两种三掺体系, LNⅤ在1.53 eV处的吸收明显增强. 研究认为双掺和三掺样品中Mn和Ce离子间存在电荷转移, 基于此可以解释多掺样品中新出现的光折变吸收峰. 通过比较, 认为Zn2+浓度达阈值的三掺样品在双光存储中更具优势: 除通常选作深、浅中心的Mn 2.87 eV和Ce 2.42 eV吸收外, 还可选Ce 2.42 eV与Mn 1.53 eV组合, 双光存储应用使时后者衍射效率更高、灵敏度更好、动态范围更大.Abstract: The electronic structures and optical properties of Mn, Ce and Zn triple-doped LiNbO3 crystals and their comparative groups are investigated through the first-principles method based on the density functional theory. The results show that the defect levels of Mn and Ce doped LiNbO3 crystals appear within the band gaps, which are mainly contributed by the orbits of Mn 3d and Ce 4f, respectively. There are four absorption peaks at 3.34, 2.87, 2.42, 1.42 eV respectively in the Mn and Ce co-doped ample LNⅢ. For the Mn, Ce and Zn triple-doped sample, the absorption peaks are formed at about 3.13, 2.73, 2.38, 1.90, 1.65 eV, when the Zn-doped concentration reaches the threshold (about 7 mol%), the LNⅤ absorption peaks of the triple-doped sample appear around 2.87, 2.42, 1.78, 1.53 eV. Comparing the double-doped and two triple-doped systems, the absorption of LNⅤ at 1.53 eV is significantly enhanced. This work proposes that the charges would transfer between the Mn and Ce ions in multi-doped samples of this paper. Therefore the phenomenon could explain well why a photorefraction absorption of Ce ions is generated in multi-doped samples, which doesn't exist in Ce-doped LiNbO3 crystals. By comparising with other samples, it is considered that the energy levels of Ce (2.42 eV) and Mn (1.53 eV) could act as deep and shallow energy levels respectively in storage process in tridoped crystals with Zn ion concentration reaching the threshold, which have more advantages in diffraction efficiency, sensitivity and dynamic range in the double-light storage application.
-
表 1 LiNbO3晶体中各原子坐标
原子 价态 X坐标/nm Y坐标/nm Z坐标/nm Li 1 0 0 0.280 2 Nb 5 0 0 0 O -2 0.047 7 0.343 5 0.063 3 表 2 各掺杂样品的占位和电荷补偿
名称 LNⅠ LNⅡ LNⅢ LNⅣ LNⅤ 掺杂样品 单掺Mn2+
LiNbO3晶体单掺Ce4+
LiNbO3晶体双掺Mn2+和Ce4+
LiNbO3晶体三掺Mn2+,Ce4+和Zn2+(L)
LiNbO3晶体三掺Mn2+,Ce4+和Zn2+(H)
LiNbO3晶体占位及电荷补偿 MnLi+-VLi- CeLi3+-3VLi- MnLi+-CeNb- MnLi+-CeNb--ZnLi+-VLi- MnLi+-CeNb--3ZnLi+-ZnNb3- 表 3 纯LiNbO3晶体常数优化结果与实验值
晶格常数 a/nm b/nm c/nm V/nm3 实验值 1.029 66 1.029 66 1.386 31 1.272 84 优化结果 1.029 62 1.029 62 1.368 26 1.272 80 -
[1] BUSE K, ADIBI A, PSALTIS D. Non-Volatile Holographic Storage in Doubly Doped Lithium Niobate Crystals[J]. Nature, 1998, 393(6686): 665-668. doi: 10.1038/31429 [2] YUE X F, ADIBI A, HUDSON T, et al. Role of Cerium in Lithium Niobate for Holographic Recording[J]. Journal of Applied Physics, 2000, 87(9): 4051-4055. doi: 10.1063/1.373043 [3] KANG B, RHEE B K, JOO G T, et al. Measurements of Photovoltaic Constant and Photoconductivity in Ce, Mn: LiNbO3 Crystal[J]. Optics Communications, 2006, 266(1): 203-206. doi: 10.1016/j.optcom.2006.04.064 [4] WANG M, WANG R, LI C Y, et al. Optical Properties of Ce: Mn: LiNbO3 Crystals with Various[Li]/[Nb] Ratios[J]. Journal of Crystal Growth, 2008, 310(16): 3820-3824. doi: 10.1016/j.jcrysgro.2008.05.029 [5] DAI L, XU C, QIAN Z, et al. Influence of In3+ Ions Concentration on the Defect Structure and Light-Induced Scattering of Ce: Mn: LiNbO3 Crystals[J]. Journal of Luminescence, 2013, 134: 255-259. doi: 10.1016/j.jlumin.2012.08.036 [6] 孔勇发, 许京军, 张光寅. 多功能光电材料——铌酸锂晶体[M]. 北京: 科学出版社, 2005. [7] ABRAHAMS S C, HAMILTON W C, REDDY J M. Ferroelectric Lithium Niobate. 4. Single Crystal Neutron Diffraction Study at 24℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6-7): 1013-1018. doi: 10.1016/0022-3697(66)90073-4 [8] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. doi: 10.1088/0953-8984/14/11/301 [9] MAMOUN S, MERAD A E, GUILBERT L. Energy Band Gap and Optical Properties of Lithium Niobate from AbInitio Calculations[J]. Computational Materials Science, 2013, 79: 125-131. doi: 10.1016/j.commatsci.2013.06.017 [10] 冉启义, 张耘. 铌酸锂晶体中非本征缺陷Fe2+/3+能级分布的第一性原理研究[J]. 西南大学学报(自然科学版), 2014, 36(5): 91-95. doi: http://xbgjxt.swu.edu.cn/article/id/jsuns2014-05-091 [11] 何静芳, 郑树凯, 周鹏力, 等. Cu-Co共掺杂ZnO光电性质的第一性原理计算[J]. 物理学报, 2014, 63(4): 251-257. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201404034.htm [12] VANDERBILT D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. doi: 10.1103/PhysRevB.41.7892 [13] LI L L, FAN Y J, LI Y L, et al. Double-Centers of V, Ce-Codoped LiNbO3 from Hybrid Density Functional Theory Calculations: Electron Trapping and Excitation between the Defect Levels[J]. Crystal Growth & Design, 2020, 20(4): 2774-2780. [14] 赵佰强, 张耘, 邱晓燕, 等. Cu, Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究[J]. 物理学报, 2016, 65(1): 014212. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201601021.htm [15] YANG Y P, PSALTIS D, LUENNEMANN M, et al. Photorefractive Properties of Lithium Niobate Crystals Doped with Manganese[J]. Journal of the Optical Society of America B, 2003, 20(7): 1491-1502. doi: 10.1364/JOSAB.20.001491 [16] ZHANG T, WANG X, GENG T, et al. Enhanced Photorefractive Properties in Hf, Ce and Cu Co-Doped LiNbO3 Crystals for Holographic Application[J]. Journal of Alloys and Compounds, 2015, 629: 255-259. doi: 10.1016/j.jallcom.2014.12.226 [17] SIDOROV N V, TEPLYAKOVA N A, BOBREVA L A, et al. Optical Properties and Defects of Double Doped CrystalsLiNbO3: Mg(5. 05): Fe(0. 009) and LiNbO3: Zn(4. 34): Fe(0. 02) (Mol%)[J]. Journal of Structural Chemistry, 2019, 60(11): 1765-1772. doi: 10.1134/S002247661911009X [18] 杨春晖, 孙亮, 冷雪松, 等. 光折变非线性光学材料---铌酸锂晶体[M]. 北京: 科学出版社, 2009. [19] XU H X, CHERNATYNSKIY A, LEE D, et al. Stability and Charge Transfer Levels of Extrinsic Defects inLiNbO3[J]. Physical Review B, 2010, 82(18): 184109-1-184109-8. [20] BOYSEN H, ALTORFER F. A Neutron Powder Investigation of the High-Temperature Structure and PhaseTransition in LiNbO3[J]. Acta Crystallographica Section B Structural Science, 1994, 50(4): 405-414. doi: 10.1107/S0108768193012820 [21] DAVID S S, JANICE A S. 密度泛函理论[M]. 李健, 周勇, 译. 北京: 国防工业出版社, 2014: 220-224. [22] doi: http://www.researchgate.net/profile/Donghwa_Lee/publication/237703396_Stability_of_intrinsic_defects_and_defect_clusters_in_LiNbO3_from_density_functional_theory_calculations/links/00b7d538122db141bd000000 XU H X, LEE D, HE J, et al. Stability of Intrinsic Defects and Defect Clusters inLiNbO3 from Density Functional Theory Calculations[J]. Physical Review B, 2008, 78(17): 174103-1- 174103-12. [23] doi: http://arxiv-web.arxiv.org/pdf/cond-mat/0311240 VEITHEN M, GONZE X, GHOSEZ P. First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides[J]. Physical Review Letters, 2004, 93(18): 187401-1-187401-4. [24] 苏玉长, 肖立华, 伏云昌, 等. LaB6电子结构及光学性质的第一性原理计算[J]. 中国科学: 物理学力学天文学, 2011, 41(1): 58-65. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201101010.htm [25] LIU Y W, KITAMURA K, TAKEKAWA S, et al. Nonvolatile Two-Color Holography in Mn-Doped Near-Stoichiometric Lithium Niobate[J]. Applied Physics Letters, 2002, 81(15): 2686-2688. doi: 10.1063/1.1512951 [26] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱[J]. 物理学报, 2017, 66(2): 187-193. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201702022.htm [27] LIM K S, TAK S J, LEE S K, et al. Grating Formation and Decay in Photochromic Mn, Ce: LiNbO3[J]. Journal of Luminescence, 2001, 94-95: 73-78. doi: 10.1016/S0022-2313(01)00250-2 [28] 张欣, 徐朝鹏, 卢海涛, 等. 铈铁掺杂铌酸锂晶体光折变性能的研究[J]. 红外与激光工程, 2015, 44(12): 3718-3722. doi: 10.3969/j.issn.1007-2276.2015.12.037 [29] 罗娅, 张耘, 梁金铃, 等. 铜铁镁三掺铌酸锂晶体的第一性原理研究[J]. 物理学报, 2020, 69(5): 100-107. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202005010.htm [30] PSALLIS D, BRADY D, WAGNER K. Adaptive Optical Networks Using Photorefractive Crystals[J]. Applied Optics, 1988, 27(9): 1752-1759. doi: 10.1364/AO.27.001752 [31] MOK F H, BURR G W, PSALTIS D. System Metric for Holographic Memory Systems[J]. Optics Letters, 1996, 21(12): 896-898. doi: 10.1364/OL.21.000896