-
开放科学(资源服务)标志码(OSID):
-
伴随着页岩气勘探和开采技术的进步,日益丰富的天然气资源及其相对于其他轻质烷烃的潜在竞争优势,使得从天然气中生产化学中间体和高附加值的化学品成为一种有吸引力的选择[1-3]. 乙炔(C2H2)被誉为“有机合成之母”,它不仅在金属加工、焊接和切割领域发挥着重要作用[4-5],而且还用于生产其他化学品,如氯乙烯、乙醛、醋酸乙烯、丙烯腈和丙烯酸等产品[6-9],其广泛的应用和丰富的下游产品促使学术界和产业界对其生产方法更为关注.
Khan等人[10]对甲烷(CH4)热解的动力学参数进行了总结;Dean[11]提出了由25个物种和44个反应组成的简化模型来解释CH4的热解过程;Steinberg[12]研究了CH4在973~1 173 K条件下的热解动力学;Baranov等人[13]研究了CH4和氢原子混合物的热解,指出C2H2的快速形成是通过激发乙烷(C2H6)和乙烯(C2H4)分子的二次解离所引起的;Rodat等人[14]模拟了CH4在1 500~2 300 K下的热裂解,预测了气体浓度随停留时间的变化关系;Lümmen[15]利用反应力场分子动力学模拟研究了CH4热解过程;Paxman等人[16]研究了CH4热分解的动力学参数;Xue等人[17]利用反应力场分子动力学研究了CH4在不同温度和密度下形成纳米腔的过程;Dinh等人[18]研究了电弧法CH4直接转化为C2H2的过程;Ogihara等人[19]研究CH4和乙烷(C2H6)混合物在973~1 073 K下的热解.
总的来说,CH4热解制备C2H2过程已经受到广泛的关注,但目前多数报道都是在1 200~2 000 K温度下进行的研究. 而在实际天然气制备C2H2工艺中,广泛使用的是将天然气一部分用于燃烧,为余下天然气热解提供能量,燃烧和裂解在乙炔炉中同时进行. 天然气在燃烧的过程中会瞬间释放出大量的热量,促使局部高温出现,而此时会发生CH4向C2H2转化. 因此,研究CH4在高温下热解形成C2H2的反应机理是很重要的.
在以前的报道中,有关CH4热解过程中的CH3,C2H4,C2H2反应途径的敏感性分析是很少见的,所分析的反应也是有限的. 同时,热解反应速度非常快,会产生大量的中间体和自由基,这些中间体和自由基与温度、压力等热力学条件有关. 如果仅仅是从实验获得的最终产物去分析各种基本步骤是一项极其困难、艰巨的任务. 因此,在原子水平上对CH4高温热解制备C2H2的反应过程进行理论研究,阐明反应机理以及C2H2的主要形成和消耗途径是对实验研究的必要而有益的补充.
随着计算机科技的快速发展,分子动力学模拟方法已经在各领域得到了广泛的使用[20-22]. 在现有的反应力场中,由Adrivan Duin和William A Goddard Ⅲ设计的ReaxFF反应力场是使用最广泛的反应力场之一[23-25]. 该方法基于键级和键距的关系,可以准确地描述键的断裂和形成,有助于对化学反应进行原子和分子水平上的研究. 目前,反应力场分子动力学已经广泛应用于研究烃类的热解过程[26-31].
本研究结合密度泛函理论和反应力场分子动力学模拟,分析了CH4在不同温度和压强下热解制备C2H2的过程. 第1部分研究了温度、密度对CH4热解制备C2H2的影响,并结合数学分析得到了最适的反应温度和压强;第2部分研究了高温下CH4到C2H2的转化机理,分析了C2H6,C2H4,C2H2的主要形成和消耗途径,并与文献对比,发现了一些新反应途径. 这些研究有助于更全面、更系统地认识天然气转化为C2H2的反应过程,对天然气制备C2H2的工艺优化具有参考价值.
Theoretical Study on Pyrolysis of Methane to Acetylene at High Temperature
-
摘要: 通过密度泛函理论和反应力场分子动力学模拟, 探讨了甲烷(CH4)在不同温度和压强下热解到乙炔(C2H2)的过程. 结果表明, 高温低压有利于该转化过程. 热解的最佳温度是1 800 K, 最优压强是70~80 kPa. 在高温下通过分子动力学模拟观察到: C2H2的主要形成源自C2H3的解离脱氢和C3H5的C—C键断裂, 主要消耗在C2H2自身的吸氢, 以及与CH3和CH2自由基的碰撞; 同时也发现了一些新的反应途径.Abstract: This work explored the mechanism of methane pyrolysis to acetylene at different temperatures and pressures by chemical equilibrium thermodynamic analysis and molecular dynamics simulation. The results showed that high temperatures and low pressures were beneficial to the process. The optimal temperature and pressure were 1 800 K and 70-80 kPa, respectively. It was found by high-temperature molecular dynamics simulations that the dominant formation channels of acetylene were the dehydrogenation of C2H3 and the C—C bond fission of C3H5. The main consumption pathways were C2H2 capturing a hydrogen atom and collision with CH3 or CH2. Some new reaction pathways were also found.
-
Key words:
- methane pyrolysis /
- acetylene /
- mechanism /
- sensitivity analysis /
- molecular dynamics .
-
表 1 模拟中涉及C2H6,C2H4和C2H2的反应途径
编号 反应 ΔG298K ΔG3 500K 来源 R1 2CH3→C2H6 -331.92 205.10 文献[40] R2 CH4+CH3→C2H6+H 67.49 119.96 文献[40] R3 C2H5+H→C2H6 -379.61 98.58 文献[40] R4 CH2+CH4→C2H6 -406.64 13.97 本研究 R5 C2H6+CH3→CH3—CH—CH3+H2 20.59 11.17 本研究 R6 C2H6+H→C2H5+H2 -19.87 -118.49 文献[40] R7 C2H6→CH2+CH4 406.64 -13.97 本研究 R8 C2H6→C2H4+H2 104.98 -301.25 文献[41] R9 C2H6+CH3→C3H8+H 53.43 154.68 本研究 R10 C2H6+H→CH3+CH4 -67.49 -119.96 文献[42] R11 C2H6→C2H5+H 379.61 -98.58 文献[13] R12 C2H6→2CH3 331.92 -205.10 文献[13] R13 C2H5→C2H4+H 124.85 -182.76 文献[41] R14 C2H3+H→C2H4 -420.45 16.90 文献[13] R15 CH3+CH2→C2H4+H -301.58 -182.17 文献[40] R16 2CH3→C2H4+H2 -226.94 -96.15 文献[13] R17 C3H8→C2H4+CH3+H 451.04 -436.01 本研究 R18 C3H5+H2→C2H4+CH3 -75.90 -186.44 本研究 R19 CH2-CH2-CH3→C2H4+CH3 111.71 63.35 文献[41] R20 C2H4+C2H2→C4H4+2H 563.96 265.31 本研究 R21 C2H4+CH2→cycle-C3H6 -460.11 -421.37 本研究 R22 C2H4+CH3→CH2—CH2—CH3 -111.71 -63.35 文献[43] R23 C2H4→C2H2+H2 146.15 -236.35 文献[39] R24 C2H4+H→C2H5 -124.85 182.76 文献[13] R25 C2H4→C2H3+H 420.45 -16.90 文献[41] R26 C2H3→C2H2+H 125.19 -199.49 文献[12] R27 C3H5→C2H2+CH3 70.25 -422.79 文献[43] R28 C2H3+H→C2H2+H2 -274.30 -219.45 文献[40] R29 C3H4→C2H2+CH2 217.40 190.20 本研究 R30 C2H+H2→C2H2+H -116.32 -63.47 文献[41] R31 C4H5→C2H2+C2H3 172.00 139.95 文献[44] R32 C4H4→2C2H2 -18.33 -481.70 本研究 R33 C4H3→C2H2+C2H 261.75 240.79 文献[45] R34 C2H+H→C2H2 -515.76 -83.39 文献[40] R35 2CH2→C2H2+H2 -629.57 -524.46 文献[46] R36 C2H2+CH4→C3H6 -96.27 349.32 本研究 R37 C2H2+H→C2H+H2 116.32 63.47 文献[40] R38 C2H2→C2H+H 515.76 83.39 文献[45] R39 C2H2+H2→C2H3+H 274.30 219.45 本研究 R40 C2H2+CH3→C3H5 -70.25 422.79 文献[41] R41 C2H2+CH2→C3H4 -217.40 -190.20 文献[40] R42 C2H2+H→C2H3 -125.19 199.49 文献[45] -
[1] SOUSA-AGUIAR E F, APPEL L G, MOTA C. Natural Gas Chemical Transformations: The Path to Refining in the Future [J]. Catalysis Today, 2005, 101(1): 3-7. doi: 10.1016/j.cattod.2004.12.003 [2] HOLMEN A. Direct Conversion of Methane to Fuels and Chemicals [J]. Catalysis Today, 2009, 142(1/2): 2-8. [3] ALVAREZ-GALVAN M C, MOTA N, OJEDA M, et al. Direct Methane Conversion Routes to Chemicals and Fuels [J]. Catalysis Today, 2011, 171(1): 15-23. doi: 10.1016/j.cattod.2011.02.028 [4] MUÑOZ-ESCALONA P, PAYARES M C, DORTA M, et al. Analysis and Influence of Acetylene and Propane Gas during Oxyfuel Gas Cutting of 1045 Carbon Steel [J]. Journal of Materials Engineering and Performance, 2006, 15(6): 684-692. doi: 10.1361/105994906X150849 [5] WILLIAMS A, SMITH D B. Combustion and Oxidation of Acetylene [J]. Chemical Reviews, 1970, 70(2): 267-293. doi: 10.1021/cr60264a004 [6] TROTUȘ I T, ZIMMERMANN T, SCHVTH F. Catalytic Reactions of Acetylene: a Feedstock for the Chemical Industry Revisited [J]. Chemical Reviews, 2014, 114(3): 1761-1782. doi: 10.1021/cr400357r [7] SCHOBERT H. Production of Acetylene and Acetylene-Based Chemicals from Coal [J]. Chemical Reviews, 2014, 114(3): 1743-1760. doi: 10.1021/cr400276u [8] ZHANG H Y, DAI B, WANG X G, et al. Hydrochlorination ofAcetylene to Vinyl Chloride Monomer over Bimetallic Au-La/SAC Catalysts [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 49-54. doi: 10.1016/j.jiec.2011.11.075 [9] LIN T J, MENG X, SHI L. Catalytic Hydrocarboxylation of Acetylene to Acrylic Acid Using Ni2O3 and Cupric Bromide as Combined Catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 77-83. doi: 10.1016/j.molcata.2014.09.027 [10] KHAN M S, CRYNES B L. Survey of Recent Methane Pyrolysis Literature [J]. Industrial & Engineering Chemistry, 1970, 62(10): 54-59. [11] DEAN A M. Detailed Kinetic Modeling of Autocatalysis in Methane Pyrolysis [J]. The Journal of Physical Chemistry, 1990, 94(4): 1432-1439. doi: 10.1021/j100367a043 [12] STEINBERG M. Production of Hydrogen and Methanol from Natural Gas with Reduced CO2 Emission [J]. International Journal of Hydrogen Energy, 1998, 23(6): 419-425. doi: 10.1016/S0360-3199(97)00092-X [13] BARANOV I E, DEMKIN S A, ZHIVOTOV V K, et al. Methane Pyrolysis Stimulated by Admixture of Atomic Hydrogen: 2. Mechanism Analysis and Kinetics Calculation [J]. HighEnergy Chemistry, 2005, 39(4): 268-272. [14] RODAT S, ABANADES S, COULIÉ J, et al. Kinetic Modelling of Methane Decomposition in a Tubular Solar Reactor [J]. Chemical Engineering Journal, 2009, 146(1): 120-127. doi: 10.1016/j.cej.2008.09.008 [15] LVMMEN N. ReaxFF-Molecular Dynamics Simulations of Non-Oxidative and Non-Catalyzed Thermal Decomposition of Methane at High Temperatures [J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7883-7893. doi: 10.1039/c003367g [16] PAXMAN D, TROTTIER S, FLYNN M R, et al. Experimental and Numerical Analysis of a Methane Thermal Decomposition Reactor [J]. International Journal of Hydrogen Energy, 2017, 42(40): 25166-25184. doi: 10.1016/j.ijhydene.2017.08.134 [17] XUE X G, MENG L Y, MA Y, et al. Molecular Reactive Force-Field Simulations on the Carbon Nanocavities from Methane Pyrolysis [J]. The Journal of Physical Chemistry C, 2017, 121(13): 7502-7513. doi: 10.1021/acs.jpcc.7b00294 [18] DINH D K, LEE D H, SONG Y H, et al. Efficient Methane-to-Acetylene Conversion Using Low-Current Arcs [J]. RSC Advances, 2019, 9(56): 32403-32413. doi: 10.1039/C9RA05964D [19] OGIHARA H, TAJIMA H, KUROKAWA H. Pyrolysis of Mixtures of Methane and Ethane: Activation of Methane with the Aid of Radicals Generated from Ethane [J]. Reaction Chemistry & Engineering, 2020, 5(1): 145-153. [20] 周游, 王远强, 何清秀. 人酪氨酸酶的同源模建研究[J]. 西南大学学报(自然科学版), 2020, 42(8): 42-48. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.08.006 [21] 代武春, 肖绪洋, 程正富. Pd-Pt团簇升温过程中Pd原子偏析的分子动力学模拟研究[J]. 西南师范大学学报(自然科学版), 2016, 41(3): 13-17. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201603003.htm [22] 钟颖, 王瑨, 陈志谦. 小分子气体在聚叔丁基乙炔中扩散溶解行为的分子动力学模拟[J]. 西南大学学报(自然科学版), 2012, 34(3): 54-61. doi: http://xbgjxt.swu.edu.cn/article/id/jsunsz20120312 [23] VANDUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: a Reactive Force Field for Hydrocarbons [J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. doi: 10.1021/jp004368u [24] CHENOWETH K, VANDUIN A C T, GODDARD W A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation [J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. doi: 10.1021/jp709896w [25] SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions [J]. Npj Computational Materials, 2016, 2: 15011-15014. doi: 10.1038/npjcompumats.2015.11 [26] WANG Q D, WANG J B, LIJ Q, et al. Reactive Molecular Dynamics Simulation and Chemical Kinetic Modeling of Pyrolysis and Combustion of N-Dodecane [J]. Combustion and Flame, 2011, 158(2): 217-226. doi: 10.1016/j.combustflame.2010.08.010 [27] DING J X, ZHANG L, ZHANG Y, et al. A Reactive Molecular Dynamics Study of N-Heptane Pyrolysis at High Temperature [J]. The Journal of Physical Chemistry A, 2013, 117(16): 3266-3278. doi: 10.1021/jp311498u [28] DONG X N, FAN X, FAN Y D, et al. Reactive Molecular Dynamics Simulation of the Pyrolysis and Combustion of Benzene: Ultrahigh Temperature and Oxygen-Induced Enhancement of Initiation Pathways and Their Effect on Carbon Black Generation [J]. RSC Advances, 2015, 5(54): 43695-43704. doi: 10.1039/C5RA02247A [29] CHEN Z J, SUN W Z, ZHAO L. High-Temperature and High-Pressure Pyrolysis of Hexadecane: Molecular Dynamic Simulation Based on Reactive Force Field (ReaxFF) [J]. The Journal of Physical Chemistry A, 2017, 121(10): 2069-2078. doi: 10.1021/acs.jpca.6b12367 [30] LIU Y L, DING J X, HAN K L. Molecular Dynamics Simulation of the High-Temperature Pyrolysis of Methylcyclohexane [J]. Fuel, 2018, 217: 185-192. doi: 10.1016/j.fuel.2017.12.055 [31] XIN L Y, LIU C, LIU Y, et al. Thermal Decomposition Mechanism of some Hydrocarbons by ReaxFF-Based Molecular Dynamics and Density Functional Theory Study [J]. Fuel, 2020, 275: 117885-1177898. doi: 10.1016/j.fuel.2020.117885 [32] PLIMPTON S. Fast Parallel Algorithms for Short-Range Molecular Dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039 [33] AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques [J]. Parallel Computing, 2012, 38(4-5): 245-259. doi: 10.1016/j.parco.2011.08.005 [34] FINCKE J R, ANDERSON R P, HYDE T, et al. Plasma Thermal Conversion of Methane to Acetylene [J]. PlasmaChemistry and Plasma Processing, 2002, 22(1): 105-136. [35] GUO X, FANG G, LI G, et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen [J]. Science, 2014, 344(6184): 616-619. doi: 10.1126/science.1253150 [36] CHEN C J, BACK M H, BACK R A. The Thermal Decomposition of Methane. I. Kinetics of the Primary Decompositionto C2H6+H2; Rate Constant for the Homogeneous Unimolecular Dissociation of Methane and Its Pressure Dependence [J]. Canadian Journal of Chemistry, 1975, 53(23): 3580-3590. doi: 10.1139/v75-516 [37] OLSVIK O, BILLAUD F. Modelling of the Decomposition of Methane at 1 273 K in a Plug Flow Reactor at Low Conversion [J]. Journal of Analytical and Applied Pyrolysis, 1993, 25: 395-405. doi: 10.1016/0165-2370(93)80058-8 [38] TSANG W, HAMPSON R F. Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds [J]. Journal of Physical and Chemical Reference Data, 1986, 15(3): 1087-1279. doi: 10.1063/1.555759 [39] ZANTHOFF H, BAERNS M. Oxidative Coupling of Methane in the Gas Phase. Kinetic Simulation and Experimental Verification [J]. Industrial & Engineering Chemistry Research, 1990, 29(1): 2-10. [40] STEACIE E W R. The Kinetics of the Reaction H+C2H6=CH4+CH3 [J]. The Journal of Chemical Physics, 1938, 6(1): 37-40. doi: 10.1063/1.1750121 [41] ABANADES S, FLAMANT G. Solar Hydrogen Production from the Thermal Splitting of Methane in a High Temperature Solar Chemical Reactor [J]. Solar Energy, 2006, 80(10): 1321-1332. doi: 10.1016/j.solener.2005.11.004 [42] FRENKLACH M, CLARY D W, GARDINER W CJr, et al. Effect of Fuel Structure on Pathways to Soot [J]. Symposium (International) on Combustion, 1988, 21(1): 1067-1076. doi: 10.1016/S0082-0784(88)80337-0 [43] COLKET M B III. The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube [J]. Symposium (International) on Combustion, 1988, 21(1): 851-864. doi: 10.1016/S0082-0784(88)80317-5 [44] BAUERLE S, KLATT M, WAGNER H G G. Recombination and Decomposition of Methylene Radicals at High Temperatures [J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1995, 99(6): 870-879. doi: 10.1002/bbpc.19950990612 [45] MARQUES J M C, MARTÍNEZ-NÚÑEZ E, FERNÁNDEZ-RAMOS A, et al. Trajectory Dynamics Study of the Ar+CH4 Dissociation Reaction at High Temperatures: The Importance of Zero-Point-Energy Effects [J]. The Journal of Physical Chemistry A, 2005, 109(24): 5415-5423. doi: 10.1021/jp044707+