-
开放科学(资源服务)标识码(OSID):
-
高镍三元材料为正极的锂离子电池具有能量密度高、环境友好等优点,有着广泛的应用前景和巨大潜在的经济效益[1],适合大量投放市场进行规模生产,但其自身的容量衰减和安全问题不容忽视,高镍三元电池随着高镍正极中的Ni含量提升,电池的容量衰减快速加剧,严重影响电池的应用. 一般而言,锂离子电池中所用的石墨或硅基负极材料的容量设定通常高于正极材料,因此全电池的容量主要取决于正极材料的总容量. 而高镍三元正极在制备和充放电循环中常伴随着阳离子混排、表面反应、材料中过渡金属元素的迁移与溶解析出、氧空位的产生、相变和微裂纹的产生等问题,促使电池的容量快速衰减.
除了正极材料以外,作为构成电池的主要组成成分的负极和电解液也对锂离子电池容量衰减有影响. 负极材料的自身结构、体积膨胀的大小、表面SEI膜的完整性等也与电池的循环性能息息相关. 作为与正、负极相接触的电解液,其自身的化学稳定、电化学稳定性及与电极相容性和副反应也影响着电池容量衰减的程度.
综上,本研究从高镍三元锂离子电池重要组成成分:正极、负极和电解液,分别探讨其影响全电池性能衰减的机理,以期通过探究其深层次机理,找到提升高镍三元正极材料锂离子电池循环稳定性的突破口,为开发综合性能佳且容量衰减程度小高镍三元锂离子电池奠定理论基础.
Prospectsof the Research on Performance Degradation of Nickel-rich Ternary Lithium-ion Battery
-
摘要: 磷酸铁锂(LFP)和锰酸锂(LMO)为正极材料的锂离子电池早已被系统研究并广泛应用于市场. 随着纯电动汽车、混合动力汽车等高速发展, 人们对续航里程有更高的追求, 而LFP和LMO二者的比能量仅在100~150 Wh/kg, 难以维持远距离的使用需求, 具有高比能量的高镍三元锂离子电池能很好满足上述要求. 然而, 高镍三元电池的容量衰减较快、安全性问题等有待进一步研究, 使其更好地应用于新能源汽车领域. 本研究重点聚焦高镍三元锂离子电池性能衰减机制研究, 分别从高镍三元锂离子电池的三大要素正极、负极和电解液入手, 探究其根本的衰减原理, 找到制约高镍三元锂离子电池发展的主要因素, 以便于通过高镍材料掺杂修饰、表面包覆等改性策略, 促进高镍三元锂离子电池的进一步发展.Abstract: Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) have been widely used as cathode in the commercialized Lithium-ion batteries. With the rapid development of pure electric vehicles and hybrid electric vehicles, there have been a higher demanding on longer driving mileage. The low energy density at only 100-150 Wh/kg of LFP and LMO based Lithium-ion batteries are difficult to meet these practical requirements. Nickel-rich cathode based Lithium-ion batteries with much higher specific energy are becoming one of the most promising candidates to achieve the goal. However, the performance degradation and safety problems of Nickel-rich cathode based Lithium-ion batteries are still needed to further investigate for their better application in the electric vehicles. In this review focused on the performance degradation of Nickel-rich cathode based Lithium-ion batteries. Three key components, cathode electrode, anode electrode and electrolyte were analyzed to explore the mechanism of performance degradation. It is hoped this work can provide the comprehensive understanding of the performance degradation of the Ni-rich cathode based Li-ion batteries, and should shed the lights on the better development of these batteries through materials modification such as doping and coating.
-
Key words:
- Lithium-ion batteries /
- Nickel-rich ternary cathode material /
- anode /
- electrolyte /
- performance degradation .
-
图 1 α-NaFeO2层状结构[8]
图 2 高镍LiNi0.8Co0.1Mn0.1O2(NCM811)层状氧化物(R-3m)的原子模型投影到(a)bc和(b)ab平面上[9]
图 4 高镍正极材料在空气中暴露后表面变化示意图[19]
图 5 正极材料中过渡金属元素的迁移与溶解析出示意图[22]
图 6 氧空位的结构示意图[27]
图 7 高镍NCM的STEM图[31]
图 8 高镍NCM材料二次颗粒和一次颗粒经过100次循环后充电至4.3 V的微裂纹情况[38]
图 9 均匀掺杂Al3+的NCM制备工艺[41]
图 10 NCA正极材料的SEM图像(a-e)和相应的孔隙分布图(f-j)[46].
图 11 石墨负极在高压循环前后的SEM图像[52]
-
[1] STEINER J D, MU L, WALSH J, et al. Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-rich Layered Cathode Materials[J]. ACS applied materials & interfaces, 2018, 10(28): 23842-23850. [2] MANTHIRAM A, SONG B, LI W. A Perspective on Nickel-rich Layered Oxide Cathodes for Lithium-ion Batteries[J]. Energy Storage Materials, 2017, 6: 125-139. doi: 10.1016/j.ensm.2016.10.007 [3] YOSHIO M, TODOROV Y, YAMATO K, et al. Preparation of LiyMnxNi1-xO2 as a Cathode for Lithium-ion Batteries[J]. Journal of Power Sources, 1998, 74(1): 46-53. doi: 10.1016/S0378-7753(98)00011-1 [4] OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative Study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 Volt Secondary Lithium cells[J]. Electrochimica Acta, 1993, 38(9): 1159-1167. doi: 10.1016/0013-4686(93)80046-3 [5] STOYANOVA R, ZHECHEVA E, ZARKOVA L J S S I. Effect of Mn-substitution for Co on the Crystal Structure and Acid Delithiation of LiMnyCo1-yO2 Solid Solutions[J]. Solid State Ionics, 1994, 73(3-4): 233-240. doi: 10.1016/0167-2738(94)90039-6 [6] ZHONG Q, SACKEN U V J J O P S. Crystal Structures and Electrochemical Properties of LiAlyNi1-yO2 Solid Solution[J]. Journal of Power Sources, 1995, 54(2): 221-223. doi: 10.1016/0378-7753(94)02071-A [7] YOSHIO M, NOGUCHI H, ITOH J I, et al. Preparation and Properties of LiCoyMnxNi1-x-yO2 as a Cathode for Lithium Ion Batteries[J]. Journal of Power Sources, 2000, 90(2): 176-181. doi: 10.1016/S0378-7753(00)00407-9 [8] ELLIS B L, LEE K T, NAZAR L F. Positive Electrode Materials for Li-ion and Li-batteries[J]. Chemistry of materials, 2010, 22(3): 691-714. doi: 10.1021/cm902696j [9] LIM J M, HWANG T, KIM D, et al. Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material[J]. Scientific Reports, 2017, 39669: 1-10. [10] TSAI Y W, LEE J F, LIU D G, et al. In-situ X-ray Absorption Spectroscopy Investigations of a Layered LiNi0.65Co0.25Mn0.1O2 Cathode Material for Rechargeable Lithium Batteries[J]. Journal of Materials Chemistry, 2004, 14(6): 958-965. doi: 10.1039/b315063a [11] PAN C C, ZHU Y R, YANG Y C, et al. Influences of Transition Metal on Structural and Electrochemical Properties of LiNixCoyMnzO2(0.6≤x≤0.8) Cathode Materials for Lithium-ion Batteries[J]. 中国有色金属学报(英文版), 2016, 26(5): 1396-1402. [12] WANG J, ZHANG M, TANG C, et al. Microwave-irradiation Synthesis of Li1.3NixCoyMn1-x-yO2.4 Cathode Materials for Lithium Ion Batteries[J]. Electrochimica Acta, 2012, 80: 15-21. doi: 10.1016/j.electacta.2012.06.081 [13] LIANG L, DU K, LU W, et al. Synthesis and Characterization of LiNi0.6CoxMn0.4-xO2 (x=0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) with High-electrochemical Performance for Lithium-ion Batteries[J]. Electrochimica Acta, 2014, 146: 207-217. doi: 10.1016/j.electacta.2014.09.063 [14] ZHENG J, WANG H K, MANTHIRAM A, et al. Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0≤x≤0.08) Cathodes for Lithium-Ion Batteries[J]. ACS Applied Materials Interfaces, 2015, 7(12): 6926-6934. doi: 10.1021/acsami.5b00788 [15] HYUNG J N, SUNG J Y, CHONG S Y, et al. Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-ion Batteries[J]. Journal of Power Sources, 2013, 233: 121-130. doi: 10.1016/j.jpowsour.2013.01.063 [16] WU F, LIU N, CHEN L, et al. Improving the Reversibility of the H2-H3 Phase Transitions for Layered Ni-rich Oxide Cathode Towards Retarded Structural Transition and Enhanced Cycle Stability[J]. Nano Energy, 2019, 59: 50-57. doi: 10.1016/j.nanoen.2019.02.027 [17] WU F, TIAN J, SU Y, et al. Effect of Ni2+ Content on Lithium/Nickel Disorder for Ni-rich Cathode Materials[J]. ACS applied materials interfaces, 2015, 7(14): 7702-7708. doi: 10.1021/acsami.5b00645 [18] ZHENG J, TENG G, XIN C, et al. The Role of Super-Exchange Interaction on Tuning of Ni/Li Disordering in Layered Li(NixMnyCoz)O2[J]. J Phys Chem Lett. 2017, 8(22): 5537-5542. doi: 10.1021/acs.jpclett.7b02498 [19] CHO D-H, JO C-H, CHO W, et al. Effect of Residual Lithium Compounds on Layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of The Electrochemical Society, 2014, 161(6): A920-A926. doi: 10.1149/2.042406jes [20] EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling Transition Metal Dissolution of Li1. 04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique[J]. Journal of Power Sources, 2016, 329: 364-371. doi: 10.1016/j.jpowsour.2016.08.099 [21] NOH H J, SUN Y K. A Novel Concentration-Gradient Li[Ni0.83Co0.07Mn0.10]O2 Cathode Material for High-Energy Rechargeable Li-Ion Batteries[C]. Proceedings of the ECS Meeting Abstracts, F, IOP Publishing, 2012. [22] LIN Q, GUAN W, MENG J, et al. A New Insight into Continuous Performance Decay Mechanism of Ni-rich Layered Oxide Cathode for High Energy Lithium Ion Batteries[J]. Nano Energy, 2018, 54: 313-321. doi: 10.1016/j.nanoen.2018.09.066 [23] ZHU Y, TIAN X, ZHOU X, et al. Controlling the Oxygen Deficiency for Improving the Insertion Performance of the Layered LiNi0.6Co0.2Mn0.2O2[J]. Electrochimica Acta, 2019, 135116: 328-365. [24] HATSUKADE T, SCHIELE A, HARTMANN P, et al. Origin of Carbon Dioxide Evolved During Cycling of Nickel-rich Layered NCM Cathodes[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 38892-38899. doi: 10.1021/acsami.8b13158 [25] STERGAARD T M, GIORDANO L, CASTELLI I E, et al. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces[J]. The Journal of Physical Chemistry, C, 2018, 122(19): 10442-10449. doi: 10.1021/acs.jpcc.8b01713 [26] MIN K, SEO S-W, SONG Y Y, et al. A First-principles Study of the Preventive Effects of Al and Mg Doping on the Degradation in LiNi0.8Co0.1Mn0.1O2 Cathode Materials[J]. Phys. Chem. Chem. Phys., 2017, 19(3): 1762-1769. doi: 10.1039/C6CP06270A [27] BI Y, YANG W, DU R, et al. Correlation of Oxygen Non-stoichiometry to the Instabilities and Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Utilized in Lithium ion Battery[J]. Journal of Power Sources, 2015, 283(1): 211-218. [28] 冯泽, 孙旦, 唐有根, 等. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(Z1): 442-454. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2019Z1017.htm [29] 宋刘斌, 唐福利, 肖忠良. Li3VO4修饰富镍LiNi0.8Co0.1Mn0.1O2正极材料的电化学性能[J]. 化工学报, 2018, 69(12): 5332-5338. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201812046.htm [30] FENG W, TIAN J, NA L, et al. Alleviating Structural Degradation of Nickel-rich Cathode Material by Eliminating the Surface Fm 3 m Phase[J]. Energy Storage Materials, 2017, 8: 134-140. doi: 10.1016/j.ensm.2017.05.008 [31] CHO Y-G, JUNG S H, JEONG J, et al. Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature[J]. ACS Applied Materials Interfaces, 2021, 13(8): 9965-9974. doi: 10.1021/acsami.0c21164 [32] 陈滔, 谢正伟, 汪沣, 等. 抑制富镍正极材料微裂纹产生的研究进展[J]. 电源技术, 2019, 43(7): 1219-1222. doi: 10.3969/j.issn.1002-087X.2019.07.040 [33] 姜涛, 陈慧明, 张克金, 等. 高振实密度富锂正极材料Li[Li0.133Ni0.300Mn0.567]O2的制备和表征[J]. 电源技术, 2014, 38(3): 423-426. doi: 10.3969/j.issn.1002-087X.2014.03.005 [34] DOKKO K, NISHIZAWA M, HORIKOSHI S, et al. In Situ Observation of LiNiO2 Single-Particle Fracture during Li-Ion Extraction and Insertion[J]. Electrochemical Solid State Letters, 2000, 3(3): 125-127. [35] MYUNG S-T, MAGLIA F, PARK K-J, et al. Nickel-rich Layered Cathode Materials for Automotive Lithium-ion Batteries: Achievements and Perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. doi: 10.1021/acsenergylett.6b00594 [36] ZHANG H, OMENYA F, YAN P, et al. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries[J]. ACS Energy Letters, 2017, 2(11): 2607-2615. doi: 10.1021/acsenergylett.7b00907 [37] BI Y, TAO J, WU Y, et al. Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-rich Cathode[J]. Science, 2020, 370(6522): 1313-1317. doi: 10.1126/science.abc3167 [38] SUN H-H, MANTHIRAM A. Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries[J]. Chemistry of Materials, 2017, 29(19): 8486-8493. doi: 10.1021/acs.chemmater.7b03268 [39] YANG Z, BAO L, LI W, et al. Synthesizing LiNi0.8Co0.1Mn0.1O2 with Novel Shell-pore Structure for Enhanced Rate Performance[J]. Journal of Alloys Compounds, 2019, 789(15): 739-743. [40] SU Y, ZHANG Q, CHEN L, et al. Improved Stability of Layered and Porous Nickel-rich Cathode Materials by Relieving the Accumulation of Inner Stress[J]. Chem Sus Chem, 2020, 13(2): 426-433. doi: 10.1002/cssc.201902385 [41] YANG X, TANG Y, SHANG G, et al. Enhanced Cyclability and High-rate Capability of LiNi0.88Co0.095Mn0.025O2 Cathodes by Homogeneous Al3+ Doping[J]. ACS Applied Materials Interfaces, 2019, 11(35): 32015-32024. doi: 10.1021/acsami.9b10558 [42] LIU H, WOLF M, KARKI K, et al. Intergranular Cracking as a Major Cause of Long-term Capacity Fading of Layered Cathodes[J]. Nano letters, 2017, 17(6): 3452-3457. doi: 10.1021/acs.nanolett.7b00379 [43] KIM H, KIM M G, JEONG H Y, et al. A New Coating Method for Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles[J]. Nano letters, 2015, 15(3): 2111-2119. doi: 10.1021/acs.nanolett.5b00045 [44] KIM H-R, WOO S-G, KIM J-H, et al. Capacity Fading Behavior of Ni-Rich Layered Cathode Materials in Li-Ion Full Cells[J]. Journal of Electroanalytical Chemistry, 2016, 782: 168-73. doi: 10.1016/j.jelechem.2016.10.032 [45] YAN P, ZHENG J, GU M, et al. Intragranular Cracking as a Critical Barrier for High-voltage Usage of Layer-structured Cathode for Lithium-ion Batteries[J]. Nature communications, 2017, 8(1): 1-9. doi: 10.1038/s41467-016-0009-6 [46] WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity Fading of LiAlyNi1-x-yCoxO2 Cathode for Lithium-ion Batteries During Accelerated Calendar and Cycle Life Tests (Effect of Depth of Discharge in Charge-discharge Cycling on the Suppression of the Micro-crack Generation of LiAlyNi1-x-yCoxO2 Particle)[J]. Journal of Power Sources, 2014, 260: 50-56. doi: 10.1016/j.jpowsour.2014.02.103 [47] 张田丽, 王春梅, 宋子会. 锂离子电池石墨负极材料的改性研究进展[J]. 现代技术陶瓷, 2014 (5): 5-10. doi: 10.3969/j.issn.1005-1198.2014.05.001 [48] WU Y-S, LEE Y-H, YANG Z-W, et al. Influences of Surface Fluorination and Carbon Coating with Furan Resin in Natural Graphite as Anode in Lithium-ion Batteries[J]. Journal of Physics Chemistry of Solids, 2008, 69(2/3): 376-382. [49] SHAH R, ALAM N, RAZZAQ A A, 等. 粘结剂对形貌各异的石墨负极电化学性能的影响(英文)[J]. 物理化学学报, 2019, 35(12): 1382-1390. [50] YANG L, TAKAHASHI M, WANG B. A Study on Capacity Fading of Lithium-ion Battery with Manganese Spinel Positive Electrode During Cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. doi: 10.1016/j.electacta.2005.09.014 [51] WANDT J, FREIBERG A, THOMAS R, et al. Transition Metal Dissolution and Deposition in Li-ion Batteries Investigated by Operando X-ray Absorption Spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. doi: 10.1039/C6TA08865A [52] RONG H, XU M, ZHU Y, et al. A Novel Imidazole-based Electrolyte Additive for Improved Electrochemical Performance of High Voltage Nickel-rich Cathode Coupled with Graphite Anode Lithium Ion Battery[J]. Journal of Power Sources, 2016, 332: 312-321. doi: 10.1016/j.jpowsour.2016.09.016 [53] 王博, 张飞龙, 艾灵, 等. 高镍三元正极材料容量衰减机理及改性方法[J]. 硅酸盐学报, 2020, 48(2): 195-203. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202002009.htm [54] 王嗣慧, 徐中领, 杜锐, 等. 高镍三元锂离子电池高温存储性能衰退机理[J]. 储能科学与技术, 2017, 6(4): 770-775. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201704024.htm [55] WANG C, XING L, VATAMANU J, et al. Overlooked Electrolyte Destabilization by Manganese (Ⅱ) in Lithium-Ion Batteries[J]. Nature Communications, 2019, 10(1): 1-9. doi: 10.1038/s41467-018-07882-8 [56] 张欣, 孔令丽, 高腾跃, 等. 高镍三元锂离子电池循环衰减分析及改善[J]. 储能科学与技术, 2020, 9(3): 813-817. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202003023.htm [57] KIM J, MA H, CHA H, et al. A Highly Stabilized Nickel-rich Cathode Material by Nanoscale Epitaxy Control for High-energy Lithium-ion Batteries[J]. Energy Environmental Science, 2018, 11(6): 1449-1459. doi: 10.1039/C8EE00155C [58] 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201803026.htm [59] WANG L, FU Y, BATTAGLIA V S, et al. SBR-PVDF Based Binder for the Application of SLMP in Graphite Anodes[J]. RSC Advances, 2013, 3(35): 15022-15027. doi: 10.1039/c3ra42773k [60] AI G, WANG Z, ZHAO H, et al. Scalable Process for Application of Stabilized Lithium Metal Powder in Li-ion Batteries[J]. Journal of Power Sources, 2016, 309: 33-41. doi: 10.1016/j.jpowsour.2016.01.061 [61] 张琦, 胡琪卉, 文亚洲. 一种负极补锂高镍锂离子动力电芯的制备方法: CN109742390A[P]. 2019-05-10. [62] 武明昊, 陈剑, 王崇, 等. 锂离子电池负极材料的研究进展[J]. 电池, 2011, 41(4): 222-225. doi: 10.3969/j.issn.1001-1579.2011.04.015 [63] KANG Y-M, GO J-Y, LEE S-M, et al. Impedance Study on the Correlation Between Phase Transition and Electrochemical Degradation of Si-based Materials[J]. Electrochemistry communications, 2007, 9(6): 1276-1281. doi: 10.1016/j.elecom.2007.01.019 [64] LEE P K, TAHMASEBI M H, RAN S, et al. Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries[J]. Small, 2018, 14(41): 1802051-1802058. doi: 10.1002/smll.201802051 [65] ZHU B, LIU G, LV G, et al. Minimized Lithium Trapping by Isovalent Isomorphism for High Initial Coulombic Efficiency of Silicon Anodes[J]. Science advances, 2019, 5(11): 1-8. [66] MA J, SUNG J, LEE Y, et al. Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithium-Ion Battery Anodes[J]. Advanced Energy Materials, 2019: 1903400-1903409. [67] WANG L, HU Y H. Surface Modification of LiNi0.5Co0.2Mn0.3O2cathode Materials with Li2O-B2O3-LiBr for Lithium-ion Batteries[J]. International Journal of Energy Research, 2019, 43(9): 4644-4651. doi: 10.1002/er.4601 [68] WU F, WANG M, SU Y, et al. Surface of LiCo1/3Ni1/3Mn1/3O2 Modified by CeO2-coating[J]. Electrochimica Acta, 2009, 54(27): 6803-6807. doi: 10.1016/j.electacta.2009.06.075 [69] LEI T, ZX B, D C, et al. Flexible Lignin Carbon Membranes with Surface Ozonolysis to HostLean Lithium Metal Anodes for Nickel-rich Layered Oxide Batteries-ScienceDirect[J]. Energy Storage Materials, 2020, 24: 129-137. doi: 10.1016/j.ensm.2019.08.027 [70] 毛舒岚, 武倩, 王卓雅, 等. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202002027.htm [71] HU Z, WANG K, CHE Y, et al. A Novel Electrolyte Additive Enables High-Voltage Operation of Nickel-Rich Oxide/Graphite Cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(18): 4327-4338. doi: 10.1021/acs.jpclett.1c00803