STEINER J D, MU L, WALSH J, et al. Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-rich Layered Cathode Materials[J]. ACS applied materials & interfaces, 2018, 10(28): 23842-23850.
|
MANTHIRAM A, SONG B, LI W. A Perspective on Nickel-rich Layered Oxide Cathodes for Lithium-ion Batteries[J]. Energy Storage Materials, 2017, 6: 125-139. doi: 10.1016/j.ensm.2016.10.007
|
YOSHIO M, TODOROV Y, YAMATO K, et al. Preparation of LiyMnxNi1-xO2 as a Cathode for Lithium-ion Batteries[J]. Journal of Power Sources, 1998, 74(1): 46-53. doi: 10.1016/S0378-7753(98)00011-1
|
OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative Study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 Volt Secondary Lithium cells[J]. Electrochimica Acta, 1993, 38(9): 1159-1167. doi: 10.1016/0013-4686(93)80046-3
|
STOYANOVA R, ZHECHEVA E, ZARKOVA L J S S I. Effect of Mn-substitution for Co on the Crystal Structure and Acid Delithiation of LiMnyCo1-yO2 Solid Solutions[J]. Solid State Ionics, 1994, 73(3-4): 233-240. doi: 10.1016/0167-2738(94)90039-6
|
ZHONG Q, SACKEN U V J J O P S. Crystal Structures and Electrochemical Properties of LiAlyNi1-yO2 Solid Solution[J]. Journal of Power Sources, 1995, 54(2): 221-223. doi: 10.1016/0378-7753(94)02071-A
|
YOSHIO M, NOGUCHI H, ITOH J I, et al. Preparation and Properties of LiCoyMnxNi1-x-yO2 as a Cathode for Lithium Ion Batteries[J]. Journal of Power Sources, 2000, 90(2): 176-181. doi: 10.1016/S0378-7753(00)00407-9
|
ELLIS B L, LEE K T, NAZAR L F. Positive Electrode Materials for Li-ion and Li-batteries[J]. Chemistry of materials, 2010, 22(3): 691-714. doi: 10.1021/cm902696j
|
LIM J M, HWANG T, KIM D, et al. Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material[J]. Scientific Reports, 2017, 39669: 1-10.
|
TSAI Y W, LEE J F, LIU D G, et al. In-situ X-ray Absorption Spectroscopy Investigations of a Layered LiNi0.65Co0.25Mn0.1O2 Cathode Material for Rechargeable Lithium Batteries[J]. Journal of Materials Chemistry, 2004, 14(6): 958-965. doi: 10.1039/b315063a
|
PAN C C, ZHU Y R, YANG Y C, et al. Influences of Transition Metal on Structural and Electrochemical Properties of LiNixCoyMnzO2(0.6≤x≤0.8) Cathode Materials for Lithium-ion Batteries[J]. 中国有色金属学报(英文版), 2016, 26(5): 1396-1402.
|
WANG J, ZHANG M, TANG C, et al. Microwave-irradiation Synthesis of Li1.3NixCoyMn1-x-yO2.4 Cathode Materials for Lithium Ion Batteries[J]. Electrochimica Acta, 2012, 80: 15-21. doi: 10.1016/j.electacta.2012.06.081
|
LIANG L, DU K, LU W, et al. Synthesis and Characterization of LiNi0.6CoxMn0.4-xO2 (x=0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) with High-electrochemical Performance for Lithium-ion Batteries[J]. Electrochimica Acta, 2014, 146: 207-217. doi: 10.1016/j.electacta.2014.09.063
|
ZHENG J, WANG H K, MANTHIRAM A, et al. Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0≤x≤0.08) Cathodes for Lithium-Ion Batteries[J]. ACS Applied Materials Interfaces, 2015, 7(12): 6926-6934. doi: 10.1021/acsami.5b00788
|
HYUNG J N, SUNG J Y, CHONG S Y, et al. Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-ion Batteries[J]. Journal of Power Sources, 2013, 233: 121-130. doi: 10.1016/j.jpowsour.2013.01.063
|
WU F, LIU N, CHEN L, et al. Improving the Reversibility of the H2-H3 Phase Transitions for Layered Ni-rich Oxide Cathode Towards Retarded Structural Transition and Enhanced Cycle Stability[J]. Nano Energy, 2019, 59: 50-57. doi: 10.1016/j.nanoen.2019.02.027
|
WU F, TIAN J, SU Y, et al. Effect of Ni2+ Content on Lithium/Nickel Disorder for Ni-rich Cathode Materials[J]. ACS applied materials interfaces, 2015, 7(14): 7702-7708. doi: 10.1021/acsami.5b00645
|
ZHENG J, TENG G, XIN C, et al. The Role of Super-Exchange Interaction on Tuning of Ni/Li Disordering in Layered Li(NixMnyCoz)O2[J]. J Phys Chem Lett. 2017, 8(22): 5537-5542. doi: 10.1021/acs.jpclett.7b02498
|
CHO D-H, JO C-H, CHO W, et al. Effect of Residual Lithium Compounds on Layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of The Electrochemical Society, 2014, 161(6): A920-A926. doi: 10.1149/2.042406jes
|
EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling Transition Metal Dissolution of Li1. 04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique[J]. Journal of Power Sources, 2016, 329: 364-371. doi: 10.1016/j.jpowsour.2016.08.099
|
NOH H J, SUN Y K. A Novel Concentration-Gradient Li[Ni0.83Co0.07Mn0.10]O2 Cathode Material for High-Energy Rechargeable Li-Ion Batteries[C]. Proceedings of the ECS Meeting Abstracts, F, IOP Publishing, 2012.
|
LIN Q, GUAN W, MENG J, et al. A New Insight into Continuous Performance Decay Mechanism of Ni-rich Layered Oxide Cathode for High Energy Lithium Ion Batteries[J]. Nano Energy, 2018, 54: 313-321. doi: 10.1016/j.nanoen.2018.09.066
|
ZHU Y, TIAN X, ZHOU X, et al. Controlling the Oxygen Deficiency for Improving the Insertion Performance of the Layered LiNi0.6Co0.2Mn0.2O2[J]. Electrochimica Acta, 2019, 135116: 328-365.
|
HATSUKADE T, SCHIELE A, HARTMANN P, et al. Origin of Carbon Dioxide Evolved During Cycling of Nickel-rich Layered NCM Cathodes[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 38892-38899. doi: 10.1021/acsami.8b13158
|
STERGAARD T M, GIORDANO L, CASTELLI I E, et al. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces[J]. The Journal of Physical Chemistry, C, 2018, 122(19): 10442-10449. doi: 10.1021/acs.jpcc.8b01713
|
MIN K, SEO S-W, SONG Y Y, et al. A First-principles Study of the Preventive Effects of Al and Mg Doping on the Degradation in LiNi0.8Co0.1Mn0.1O2 Cathode Materials[J]. Phys. Chem. Chem. Phys., 2017, 19(3): 1762-1769. doi: 10.1039/C6CP06270A
|
BI Y, YANG W, DU R, et al. Correlation of Oxygen Non-stoichiometry to the Instabilities and Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Utilized in Lithium ion Battery[J]. Journal of Power Sources, 2015, 283(1): 211-218.
|
冯泽, 孙旦, 唐有根, 等. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(Z1): 442-454.
|
宋刘斌, 唐福利, 肖忠良. Li3VO4修饰富镍LiNi0.8Co0.1Mn0.1O2正极材料的电化学性能[J]. 化工学报, 2018, 69(12): 5332-5338.
|
FENG W, TIAN J, NA L, et al. Alleviating Structural Degradation of Nickel-rich Cathode Material by Eliminating the Surface Fm 3 m Phase[J]. Energy Storage Materials, 2017, 8: 134-140. doi: 10.1016/j.ensm.2017.05.008
|
CHO Y-G, JUNG S H, JEONG J, et al. Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature[J]. ACS Applied Materials Interfaces, 2021, 13(8): 9965-9974. doi: 10.1021/acsami.0c21164
|
陈滔, 谢正伟, 汪沣, 等. 抑制富镍正极材料微裂纹产生的研究进展[J]. 电源技术, 2019, 43(7): 1219-1222. doi: 10.3969/j.issn.1002-087X.2019.07.040
|
姜涛, 陈慧明, 张克金, 等. 高振实密度富锂正极材料Li[Li0.133Ni0.300Mn0.567]O2的制备和表征[J]. 电源技术, 2014, 38(3): 423-426. doi: 10.3969/j.issn.1002-087X.2014.03.005
|
DOKKO K, NISHIZAWA M, HORIKOSHI S, et al. In Situ Observation of LiNiO2 Single-Particle Fracture during Li-Ion Extraction and Insertion[J]. Electrochemical Solid State Letters, 2000, 3(3): 125-127.
|
MYUNG S-T, MAGLIA F, PARK K-J, et al. Nickel-rich Layered Cathode Materials for Automotive Lithium-ion Batteries: Achievements and Perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. doi: 10.1021/acsenergylett.6b00594
|
ZHANG H, OMENYA F, YAN P, et al. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries[J]. ACS Energy Letters, 2017, 2(11): 2607-2615. doi: 10.1021/acsenergylett.7b00907
|
BI Y, TAO J, WU Y, et al. Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-rich Cathode[J]. Science, 2020, 370(6522): 1313-1317. doi: 10.1126/science.abc3167
|
SUN H-H, MANTHIRAM A. Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries[J]. Chemistry of Materials, 2017, 29(19): 8486-8493. doi: 10.1021/acs.chemmater.7b03268
|
YANG Z, BAO L, LI W, et al. Synthesizing LiNi0.8Co0.1Mn0.1O2 with Novel Shell-pore Structure for Enhanced Rate Performance[J]. Journal of Alloys Compounds, 2019, 789(15): 739-743.
|
SU Y, ZHANG Q, CHEN L, et al. Improved Stability of Layered and Porous Nickel-rich Cathode Materials by Relieving the Accumulation of Inner Stress[J]. Chem Sus Chem, 2020, 13(2): 426-433. doi: 10.1002/cssc.201902385
|
YANG X, TANG Y, SHANG G, et al. Enhanced Cyclability and High-rate Capability of LiNi0.88Co0.095Mn0.025O2 Cathodes by Homogeneous Al3+ Doping[J]. ACS Applied Materials Interfaces, 2019, 11(35): 32015-32024. doi: 10.1021/acsami.9b10558
|
LIU H, WOLF M, KARKI K, et al. Intergranular Cracking as a Major Cause of Long-term Capacity Fading of Layered Cathodes[J]. Nano letters, 2017, 17(6): 3452-3457. doi: 10.1021/acs.nanolett.7b00379
|
KIM H, KIM M G, JEONG H Y, et al. A New Coating Method for Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles[J]. Nano letters, 2015, 15(3): 2111-2119. doi: 10.1021/acs.nanolett.5b00045
|
KIM H-R, WOO S-G, KIM J-H, et al. Capacity Fading Behavior of Ni-Rich Layered Cathode Materials in Li-Ion Full Cells[J]. Journal of Electroanalytical Chemistry, 2016, 782: 168-73. doi: 10.1016/j.jelechem.2016.10.032
|
YAN P, ZHENG J, GU M, et al. Intragranular Cracking as a Critical Barrier for High-voltage Usage of Layer-structured Cathode for Lithium-ion Batteries[J]. Nature communications, 2017, 8(1): 1-9. doi: 10.1038/s41467-016-0009-6
|
WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity Fading of LiAlyNi1-x-yCoxO2 Cathode for Lithium-ion Batteries During Accelerated Calendar and Cycle Life Tests (Effect of Depth of Discharge in Charge-discharge Cycling on the Suppression of the Micro-crack Generation of LiAlyNi1-x-yCoxO2 Particle)[J]. Journal of Power Sources, 2014, 260: 50-56. doi: 10.1016/j.jpowsour.2014.02.103
|
张田丽, 王春梅, 宋子会. 锂离子电池石墨负极材料的改性研究进展[J]. 现代技术陶瓷, 2014 (5): 5-10. doi: 10.3969/j.issn.1005-1198.2014.05.001
|
WU Y-S, LEE Y-H, YANG Z-W, et al. Influences of Surface Fluorination and Carbon Coating with Furan Resin in Natural Graphite as Anode in Lithium-ion Batteries[J]. Journal of Physics Chemistry of Solids, 2008, 69(2/3): 376-382.
|
SHAH R, ALAM N, RAZZAQ A A, 等. 粘结剂对形貌各异的石墨负极电化学性能的影响(英文)[J]. 物理化学学报, 2019, 35(12): 1382-1390.
|
YANG L, TAKAHASHI M, WANG B. A Study on Capacity Fading of Lithium-ion Battery with Manganese Spinel Positive Electrode During Cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. doi: 10.1016/j.electacta.2005.09.014
|
WANDT J, FREIBERG A, THOMAS R, et al. Transition Metal Dissolution and Deposition in Li-ion Batteries Investigated by Operando X-ray Absorption Spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. doi: 10.1039/C6TA08865A
|
RONG H, XU M, ZHU Y, et al. A Novel Imidazole-based Electrolyte Additive for Improved Electrochemical Performance of High Voltage Nickel-rich Cathode Coupled with Graphite Anode Lithium Ion Battery[J]. Journal of Power Sources, 2016, 332: 312-321. doi: 10.1016/j.jpowsour.2016.09.016
|
王博, 张飞龙, 艾灵, 等. 高镍三元正极材料容量衰减机理及改性方法[J]. 硅酸盐学报, 2020, 48(2): 195-203.
|
王嗣慧, 徐中领, 杜锐, 等. 高镍三元锂离子电池高温存储性能衰退机理[J]. 储能科学与技术, 2017, 6(4): 770-775.
|
WANG C, XING L, VATAMANU J, et al. Overlooked Electrolyte Destabilization by Manganese (Ⅱ) in Lithium-Ion Batteries[J]. Nature Communications, 2019, 10(1): 1-9. doi: 10.1038/s41467-018-07882-8
|
张欣, 孔令丽, 高腾跃, 等. 高镍三元锂离子电池循环衰减分析及改善[J]. 储能科学与技术, 2020, 9(3): 813-817.
|
KIM J, MA H, CHA H, et al. A Highly Stabilized Nickel-rich Cathode Material by Nanoscale Epitaxy Control for High-energy Lithium-ion Batteries[J]. Energy Environmental Science, 2018, 11(6): 1449-1459. doi: 10.1039/C8EE00155C
|
朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209.
|
WANG L, FU Y, BATTAGLIA V S, et al. SBR-PVDF Based Binder for the Application of SLMP in Graphite Anodes[J]. RSC Advances, 2013, 3(35): 15022-15027. doi: 10.1039/c3ra42773k
|
AI G, WANG Z, ZHAO H, et al. Scalable Process for Application of Stabilized Lithium Metal Powder in Li-ion Batteries[J]. Journal of Power Sources, 2016, 309: 33-41. doi: 10.1016/j.jpowsour.2016.01.061
|
张琦, 胡琪卉, 文亚洲. 一种负极补锂高镍锂离子动力电芯的制备方法: CN109742390A[P]. 2019-05-10.
|
武明昊, 陈剑, 王崇, 等. 锂离子电池负极材料的研究进展[J]. 电池, 2011, 41(4): 222-225. doi: 10.3969/j.issn.1001-1579.2011.04.015
|
KANG Y-M, GO J-Y, LEE S-M, et al. Impedance Study on the Correlation Between Phase Transition and Electrochemical Degradation of Si-based Materials[J]. Electrochemistry communications, 2007, 9(6): 1276-1281. doi: 10.1016/j.elecom.2007.01.019
|
LEE P K, TAHMASEBI M H, RAN S, et al. Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries[J]. Small, 2018, 14(41): 1802051-1802058. doi: 10.1002/smll.201802051
|
ZHU B, LIU G, LV G, et al. Minimized Lithium Trapping by Isovalent Isomorphism for High Initial Coulombic Efficiency of Silicon Anodes[J]. Science advances, 2019, 5(11): 1-8.
|
MA J, SUNG J, LEE Y, et al. Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithium-Ion Battery Anodes[J]. Advanced Energy Materials, 2019: 1903400-1903409.
|
WANG L, HU Y H. Surface Modification of LiNi0.5Co0.2Mn0.3O2cathode Materials with Li2O-B2O3-LiBr for Lithium-ion Batteries[J]. International Journal of Energy Research, 2019, 43(9): 4644-4651. doi: 10.1002/er.4601
|
WU F, WANG M, SU Y, et al. Surface of LiCo1/3Ni1/3Mn1/3O2 Modified by CeO2-coating[J]. Electrochimica Acta, 2009, 54(27): 6803-6807. doi: 10.1016/j.electacta.2009.06.075
|
LEI T, ZX B, D C, et al. Flexible Lignin Carbon Membranes with Surface Ozonolysis to HostLean Lithium Metal Anodes for Nickel-rich Layered Oxide Batteries-ScienceDirect[J]. Energy Storage Materials, 2020, 24: 129-137. doi: 10.1016/j.ensm.2019.08.027
|
毛舒岚, 武倩, 王卓雅, 等. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550.
|
HU Z, WANG K, CHE Y, et al. A Novel Electrolyte Additive Enables High-Voltage Operation of Nickel-Rich Oxide/Graphite Cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(18): 4327-4338. doi: 10.1021/acs.jpclett.1c00803
|