-
开放科学(资源服务)标志码(OSID):
-
水稻是重要的粮食作物,提高水稻产量是每个育种家的不懈追求[1]. 然而,水稻产量的形成是复杂的,往往与株高、有效穗数、每穗粒数和千粒质量等密切相关. 株高决定水稻生物量,植株过高易引起倒伏,从而影响光合效率. 因此,合适的水稻植株高度对提高产量至关重要. 同时,细胞扩张会影响粒型,粒型影响千粒质量,也是产量的决定性因素之一. 然而,这些性状均由多个基因控制,遗传机制非常复杂,属于典型的数量性状[2-5]. 随着分子标记技术的快速发展,研究人员通过构建不同的遗传群体对水稻农艺性状进行了QTL定位分析[6]. 利用传统分离群体(如F2,F2:3,重组自交系和双单倍体系进行株高和粒型的QTL定位,郑跃滨等[7]以短粒普通野生稻突变体和长粒栽培稻品种KJ01构建的F2分离群体,检测到24个控制水稻粒型的QTLs;Zhou等[8]以广占63-4S和TGMS29为亲本构建的F2及其衍生的F2:3群体共检测到36个粒型QTLs;Liu等[9]利用两个籼稻品种Taifeng B和Tesanai 2为亲本构建的170个家系的重组自交系(Recombinant Inbred Lines,RILs)群体共检测到34个控制水稻粒型的QTLs;封功能等[10]利用籼粳交组合Nanjing 11号×Balilla创建的DH群体,鉴定出50个与产量相关性状的QTLs. 然而,由于初级分离群体中个体间遗传背景的干扰常使QTL定位不准确,也较难直接与育种应用相结合,一定程度上限制了这些QTL的进一步克隆和育种. 为了提高QTL的定位准确度,且实现QTL定位和设计育种的一体化,染色体片段代换系(Chromosome segment substitution lines,CSSL)、近等基因系(NIL)等次级作图群体逐渐受到研究者的青睐. 水稻染色体片段代换系是创造自然变异的理想材料,同时又可将多位点控制的复杂性状进行遗传分解,尤其定位出的QTL可直接应用于育种实践,因而是理想的遗传研究材料[11]. 姚国新等[12]利用大粒品种SLG-1与小粒日本晴杂交、回交构建的一套关于千粒质量和粒型的姊妹近等基因系(Sister Near-isogenic Lines,SNILs)群体,并检测到12个QTLs;游佳等[13]以‘9311’为受体亲本,普通野生稻为供体亲本创建的染色体片段代换系群体共定位到水稻千粒质量、粒长、粒宽和长宽比等性状的16个QTLs;Fan等[14]以HHZ为受体亲本,BAS为供体亲本构建的染色体片段代换系群体,检测到25个QTLs. 本课题组也分别以日本晴和西恢18为受体亲本创建了两套水稻染色体片段代换系,并进行了一些产量相关性状的QTL定位和QTL聚合分析,如Liang等[15]以西恢18为受体亲本和沪旱3号为供体亲本构建的7代换片段CSSL-Z563为材料鉴定出11个水稻粒型QTLs;Sun等[16]以西恢18为受体亲本和沪旱3号为供体亲本构建的6代换片段水稻CSSL-Z431为材料鉴定出13个水稻穗数和粒型QTLs;Wang等[3, 17]以日本晴为受体亲本和西恢18为供体亲本构建的2个CSSL-Z747和CSSL-Z749为材料分别鉴定出46个和15个水稻产量相关性状QTLs;Ma等[18-19]以日本晴为受体亲本和西恢18为供体亲本构建的3代换片段CSSL-Z1364和6代换片段CSSL-Z744为材料分别鉴定出8个和17个水稻产量相关性状QTLs;Wang等[20]以日本晴为受体亲本和西恢18为供体亲本构建的6代换片段CSSL-Z741为材料鉴定出20个水稻重要农艺性状QTLs;Zhang等[21]以日本晴为受体亲本和西恢18为供体亲本构建的3代换片段CSSL-Z741为材料鉴定出7个水稻粒型QTLs. 由于这些CSSL所含的代换片段各不相同,且检出不同性状的QTL,为以CSSL为平台的水稻设计育种计划奠定了良好的基础.
尽管定位了大量水稻产量相关性状的QTL,但由于水稻株高、粒型等性状受多个QTL控制,要实现全基因组水稻分子设计育种,有必要鉴定出更多的有利QTL,且将这些QTL分解到单个单片段代换系(Single segment substitution lines,SSSL)中,以便更精准地研究单基因功能和实现设计育种操作. 因此,本研究在6代换片段的染色体片段代换系Z744重要农艺性状QTL定位的基础上[19],以受体日本晴与Z744杂交后代中进一步选育的矮秆、长粒水稻染色体片段代换系Z688为研究材料,进行水稻株高、粒型性状的QTL定位,并进一步培育目标QTL的纯合和杂合单片段代换系,研究来自供体西恢18等位基因的加性和显性效应,为设计育种提供重要遗传信息.
Identification of QTL Based on a Dwarf and Long-Large Grain Rice CSSL-Z688 and Development of SSSLs
-
摘要: 水稻株高、粒型等性状是由多基因控制的数量性状,遗传基础复杂. 水稻染色体片段代换系(CSSL)是研究复杂性状的理想遗传材料,然而目标基因的水稻单片段代换系(SSSL)的培育则需要多年多代逐步完成. 以4代换片段的水稻矮秆长大粒CSSL-Z688为研究材料,鉴定出7个株高及粒型性状的数量性状基因座(quantitative trait locus,QTL);进一步培育了目标QTL的5个纯合单片段代换系和5个杂合单片段代换系,其中6个QTLs(qPH1-1,qPH1-2,qGL1,qGL12,qRLW1和qGWT1)能够被纯合单片段代换系所验证. 还鉴定出11个新QTLs,分别为qPH2,qGL1-2,qGL2,qGW1,qRLW1-2,qRLW2,qRLW12,qGWT1-2,qGWT2,qGWT6和qGWT12,其中7个QTLs尚未被报道. QTL加性和显性效应表明:水稻株高、粒长、千粒质量等表型同时受到多个QTL加性和显性效应的共同影响,如来自供体西恢18的qph1-1,qPH1-2,qPH2的加性效应和qPH1-1/qph1-1及qPH1-2/qph1-2和qPH2/qph2的显性效应共同影响株高的遗传;来自西恢18的qGL1,qgl1-2,qGL2和qGL12的加性效应及qGL1/qgl1的显性效应共同影响水稻粒长的遗传;来自西恢18的qGWT1,qGWT1-2,qGWT2,qGWT6和qGWT12的加性效应及qGWT1/qgwt1,qGWT1-2/qgwt1-2,qGWT6/qgwt6,qGWT2/qgwt2和qGWT12/qgwt12的显性效应共同影响千粒质量的遗传. 这些结果表明单片段代换系的构建可有效地将遗传复杂的数量性状分解为单位点进行研究,为以单片段代换系为平台的水稻分子设计育种提供了重要遗传信息.
-
关键词:
- 水稻 /
- 染色体片段代换系(CSSL) /
- 粒型 /
- 株高 /
- QTL定位
Abstract: Plant height and grain size are quantitative traits in rice, which is controlled by multiple genes, and their genetic basis is complex. Rice chromosome segment substitution line (CSSL) is an ideal genetic material for studying complex traits. However, development of single segment substitution lines (SSSLs) needs many years and many generations to complete. In this study, seven QTLs of related traits (plant height, grain length, length width ratio, 1 000 grain weight) were identified by using a 4 generation of rice dwarf and long grain substitution segments line CSSL Z688. Five homozygous SSSLs and five heterozygous SSSLs for the target QTLs were further developed. Among the target QTLs, 6 of them (qPH1-1, qPH1-2, qGL1, qGL12, qRLW1 and qGWT1) could be verified by 5 homozygous SSSLs. In addition, 11 new QTLs (qPH2, qGL1-2, qGL2, qGW1, qRLW1-2, qRLW2, qRLW12, qGWT1-2, qGWT2, qGWT6 and qGWT12) were identified by 5 single segment substitution lines, among them, 7 QTLs were not reported previously. Additive and dominant effects of QTL showed that the phenotypes of plant height, grain length and 1 000-grain weight were all influenced by the additive and dominant effects of many QTLs. For example, the additive effects of qph1-1, qPH1-2, qPH2 from Xihui 18 and the dominant effects of qPH1-1/qph1-1, qPH1-2/qph1-2 and qPH2/qph2 in combination affected the inheritance of plant height in rice. The additive effect of qGL1, qgl1-2, qGL2 and qGL12, as well as the dominant effect of qGL1/qgl1 simultaneously influenced the inheritance of grain length. Similarly, the additive effects of qGWT1, qGWT1-2, qGWT2, qGWT6 and qGWT12, together with the dominant effects of qGWT1/qgwt1, qGWT1-2/qgwt1-2, qGWT6/qgwt6, qGWT2/qgwt2 and qGWT12/qgwt12 had combined effects on the inheritance of 1 000 grain weight. These results suggested that development of SSSLs can effectively dissect the quantitative traits with complex inheritance into single QTL/gene for research, also can provide important genetic information for rice molecular breeding by design based on the platform of single segment substitution lines.-
Key words:
- rice /
- chromosome fragment substitution line /
- grain length /
- plant height /
- QTL mapping .
-
表 1 Z688代换片段携带的水稻株高和粒型性状QTL
性状 QTL 染色体 连锁标记 代换片段长度/Mb 加性效应 贡献率/% p值 可能的基因 株高/cm qPH1-1 1 RM128 0.55 -3.20 15.00 0.003 4 OFP3[25];OsHXK6[26] qPH1-2 1 RM6950 1.33 -2.16 0.84 0.012 6 OsERF3[27];PSD1[28] 粒长/mm qGL1 1 RM128 0.55 0.11 23.94 0.000 9 qGL6 6 RM494 2.25 0.09 15.36 0.025 6 qGL12 12 RM247 0.72 0.06 8.83 0.008 5 长宽比 qRLW1 1 RM128 0.55 0.03 6.59 0.043 6 千粒质量/g qGWT1 1 RM128 0.55 0.66 9.76 0.020 8 OsMKKK55[29];OsMKKK70[29];OsMKKK62[29] 表 2 基于5个SSSLi和SSSLi(H)的水稻株高及粒型相关性状QTL加性和显型效应
性状 编号 QTL x±s QTL效应 QTL效应值 p值 株高/cm 日本晴 104.11±3.66 S1 qph1-1 81.43±10.67 a -11.34 2.38E-05 S1(H) qPH1-1/qph1-1 105.35±6.45 d 12.58 0.000 3 S2 qPH1-2 100.60±2.18 a -1.76 0.019 7 S2(H) qPH1-2/qph1-2 100.11±1.82 d -2.25 0.007 6 S3 qPH2 99.30±0.42 a -2.41 0.007 4 S3(H) qPH2/qph2 98.42±1.35 d -2.85 0.000 1 粒长/mm 日本晴 7.28±0.11 S1 qGL1 7.50±0.38 a 0.11 0.002 1 S1(H) qGL1/qgl1 7.57±0.18 d 0.18 0.010 7 S2 qGL1-2 7.00±0.21 a -0.14 0.002 8 S2(H) qGL1-2/qgl1-2 6.93±0.01 d -2.00 0.000 4 S3 qGL2 7.11±0.02 a -0.08 0.002 7 S3(H) - 7.10±0.24 d - 0.368 9 S5 qGL12 6.92±0.21 a -0.18 0.000 4 S5(H) - 7.06±0.25 d - 0.720 7 粒宽/mm 日本晴 3.34±0.07 S1 qGW1 3.43±0.07 a 0.05 0.020 5 S1(H) - 3.41±0.10 d - 0.122 7 长宽比 日本晴 2.18±0.05 S1 qRLW1 2.19±0.11 a 0.01 0.048 9 S1(H) qRLW1/qrlw1 2.22±0.09 d 0.04 6.56E-10 S2 qRLW1-2 2.07±0.06 a -0.05 0.000 9 S2(H) - 2.29±0.41 d - 0.215 6 S3 qRLW2 2.11±0.03 a -0.04 0.013 2 S3(H) qRLW2/qrlw2 2.09±0.05 d -0.04 0.043 1 S5 qRLW12 2.00±0.06 a -0.09 4.63E-06 S5(H) - 2.07±0.03 d - 0.332 5 千粒质量/g 日本晴 21.94±2.05 S1 qGWT1 25.50±1.48 a 1.78 1.13E-12 S1(H) qGWT1/qgwt1 26.20±1.16 d 2.48 0.024 6 S2 qGWT1-2 24.53±0.60 a 1.30 0.001 3 S2(H) qGWT1-2/qgwt1-2 24.10±0.77 d 0.86 0.006 0 S3 qGWT2 24.80±0.33 a 1.43 0.005 2 S3(H) qGWT2/qgwt2 24.73±1.26 d 1.39 0.025 1 S4 qGWT6 24.95±1.19 a 1.50 0.002 4 S4(H) qGWT6/qgwt6 24.83±1.29 d 1.39 0.013 8 S5 qGWT12 24.58±0.60 a 1.32 0.003 3 S5(H) qGWT12/qgwt12 24.10±0.88 d 1.08 0.025 6 注:E为以10为底的指数. Si为纯合单片段代换系SSSLi;Si(H)为具有单杂合代换片段的染色体单片段代换系SSSLi(H). a和d分别为加性效应和显性效应. p<0.05表示在SSSLi或SSSLi(H)中存在QTL的加性或显性效应. S1为RM403-RM128-RM1268;S2为RM128-RM6950-RM5389;S3为RM3294-RM6378-RM2483;S4为RM400-RM7412-RM439-RM494-RM20769;S5为RM6288-RM247-RM491. -
[1] XING Y, ZHANG Q. Genetic and Molecular Bases of Rice Yield[J]. Annual Review of Plant Biology, 2010, 61: 421-442. doi: 10.1146/annurev-arplant-042809-112209 [2] 龚晓平, 王楠, 况晓明, 等. 利用RNA干涉研究水稻OsROSES1基因的功能[J]. 西南大学学报(自然科学版), 2020(6): 1-10. doi: 10.13718/j.cnki.xdzk.2020.06.001 doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.06.001 doi: 10.13718/j.cnki.xdzk.2020.06.001 [3] 王大川, 汪会, 马福盈, 等. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(1): 140-146. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202001015.htm [4] 袁隆平. 中国的杂交水稻[J]. 中国水稻科学, 1986(1): 8-18. doi: 10.3321/j.issn:1001-7216.1986.01.002 [5] 康雪蒙, 马梦影, 巩文靓, 等. 水稻粒型基因研究进展及应用[J]. 农学学报, 2020, 10(12): 21-25. doi: 10.11923/j.issn.2095-4050.cjas20190900184 [6] HUANG R, JIANG L, ZHENG J, et al. Genetic Bases of Rice Grain Shape: So many Genes, so Little Known[J]. Trends in Plant Science, 2013, 18(4): 218-226. doi: 10.1016/j.tplants.2012.11.001 [7] 郑跃滨, 李智, 赵海燕, 等. 水稻粒长QTL定位与主效基因的遗传分析[J]. 西北植物学报, 2020, 40(4): 598-604. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX202004008.htm [8] ZHOU Y, HOU J, LI P B, et al. Genetic Dissection and Validation of QTLs for Grain Shape and Weight in Rice and Fine Mapping of qGL1. 3, a Major QTL for Grain Length and Weight[J]. Molecular Breeding, 2019, 39(12): 1-11. [9] LIU D L, KANG M H, WANG F, et al. Mapping of the Genetic Determinant for Grain Size in Rice Using a Recombinant Inbred Line (RIL) Population Generated from Two Elite Indica Parents[J]. Euphytica, 2015, 206(1): 159-173. doi: 10.1007/s10681-015-1493-1 [10] 封功能, 李东霞, 周建民, 等. 水稻籼粳交DH群体产量相关性状的QTL定位和上位性分析[J]. 扬州大学学报(农业与生命科学版), 2004, 25(2): 5-10, 26. doi: 10.16872/j.cnki.1671-4652.2004.02.002 [11] ZHANG G Q. Target chromosome-segment substitution: A Way to Breeding by Design in Rice[J]. The Crop Journal, 2021, 9(3): 658-668. doi: 10.1016/j.cj.2021.03.001 [12] 姚国新, 李金杰, 张强, 等. 利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL[J]. 作物学报, 2010, 36(8): 1310-1317. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201008012.htm [13] 游佳, 谷晗, 朱泽, 等. 水稻粒质量和粒形QTL定位及粒长位点qGL3. 2的鉴定[J]. 南京农业大学学报, 2019, 42(4): 612-621. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201904004.htm [14] FAN J, HUA H, LUO Z, et al. Whole-Genome Sequencing of 117 Chromosome Segment Substitution Lines for Genetic Analyses of Complex Traits in Rice[J]. Rice (N Y), 2022, 15(1): 5. doi: 10.1186/s12284-022-00550-y [15] LIANG P, WANG H, ZHANG Q, et al. Identification and Pyramiding of QTLs for Rice Grain Size Based on Short-Wide Grain CSSL-Z563 and Fine-Mapping of qGL3-2[J]. Rice (New York, N Y), 2021, 14(1): 35. [16] SUN S F, WANG Z B, XIANG S Q, et al. Identification, Pyramid, and Candidate Gene of QTL for Yield-Related Traits Based on Rice CSSLs in Indica Xihui18 Background[J]. Molecular Breeding, 2022, 42(4): 1-25. [17] WANG D, ZHOU K, XIANG S, et al. Identification, Pyramid and Candidate Genes of QTLs for Associated Traits Based on a Dense Erect Panicle Rice CSSL-Z749 and Five SSSLS, Three DSSLS and one TSSL[J]. Rice (N Y), 2021, 14(1): 55. doi: 10.1186/s12284-021-00496-7 [18] MA F Y, ZHU X Y, WANG H, et al. Identification of QTL for Kernel Number-Related Traits in a Rice Chromosome Segment Substitution Line and Fine Mapping of qSP1[J]. Crop Journal, 2019, 7(4): 494-503. [19] MA F Y, DU J, WANG D C, et al. Identification of Long-Grain Chromosome Segment Substitution Line Z744 and QTL Analysis for Agronomic Traits In Rice[J]. Journal of Integrative Agriculture, 2020, 19(5): 1163-1169. [20] WANG H, ZHANG J Y, NAZ F, et al. Identification of Rice Qtls for Important Agronomic Traits with Long-Kernel CSSL Z741 and Three SSSLs[J]. Rice science, 2020, 27(5): 414-422. [21] ZHANG T, WANG S, SUN S, et al. Analysis of QTL for Grain Size in a Rice Chromosome Segment Substitution Line Z1392 with Long Grains and Fine Mapping of qGL-6[J]. Rice, 2020, 13(1): 40. [22] 赵芳明, 郭超, 魏霞, 等. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析[J]. 西南大学学报(自然科学版), 2016, 38(11): 1-7. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2016.11.001 [23] PATERSON A H, DAMON S, HEWITT J D, et al. Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations, and Environments[J]. Genetics, 1991, 127(1): 181-197. [24] ZHAO F M, TAN Y, ZHENG L Y, et al. Identification of Rice Chromosome Segment Substitution Line Z322-1-10 and Mapping QTL for Agronomic Traits from the F3 Population[J]. Cereal Res Commun, 2016, 44: 370-380. [25] XIAO Y H, ZHANG G X, LIU D P, et al. GSK2 Stabilizes OFP3 to Suppress Brassinosteroid Responses in Rice[J]. The Plant Journal, 2020, 102(6): 1187-1201. [26] HUANG W, YU C, HU J, et al. Pentatricopeptide-Repeat Family Protein RF6 Functions with Hexokinase 6 to Rescue Rice Cytoplasmic Male Sterility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(48): 14984-14989. [27] ZHANG H W, ZHANG J F, QUAN R D, et al. EAR Motif Mutation of Rice OsERF3 Alters the Regulation of Ethylene Biosynthesis and Drought Tolerance[J]. Planta, 2013, 237(6): 1443-1451. [28] LI R Q, XIA J X, XU Y W, et al. Characterization and Genetic Mapping of a Photoperiod-Sensitive Dwarf 1 Locus in Rice (Oryza Sativa L. )[J]. Theoretical and Applied Genetics, 2014, 127(1): 241-250. [29] LIU Z, MEI E, TIAN X, et al. OsMKKK70 Regulates Grain Size and Leaf Angle in Rice through the OsMKK4-OsMAPK6-OsWRKY53 Signaling Pathway[J]. J Integr Plant Biol, 2021, 63(12): 2043-2057. [30] LU G H, WU Y F, BAI W B, et al. Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages[J]. Journal of Integrative Agriculture, 2013, 12(4): 603-609. [31] 蔡星星, 张盛, 王欢, 等. 水稻株型基因的研究现状及应用前景[J]. 分子植物育种, 2017, 15(7): 2809-2814. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201707047.htm [32] SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (Sd-1), "Green Revolution" Rice, Contains a Defective Gibberellin 20-Oxidase Gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9043-9048. [33] YUAN R, ZHAO N, USMAN B, et al. Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice (Oryza rufipogon Griff. ) under Rice (Oryza Sativa L. ) Background and the Identification of QTLs for Plant Architecture, Agronomic Traits and Cold Tolerance[J]. Genes (Basel), 2020, 11(9): E980. [34] BALAKRISHNAN D, SURAPANENI M, MESAPOGU S, et al. Development and Use of Chromosome Segment Substitution Lines as a Genetic Resource for Crop Improvement[J]. Theoretical and Applied Genetics, 2019, 132(1): 1-25. [35] 李锋, 张毅瑞, 陈亮, 等. 利用高密度遗传图谱挖掘水稻粒型相关QTL[J]. 黑龙江农业科学, 2021(9): 1-10. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN202109002.htm [36] 江静. 水稻粒型性状的遗传研究及主效QTL的精细定位[D]. 金华: 浙江师范大学, 2014. [37] 沈文强, 赵冰冰, 于国玲, 等. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202103008.htm [38] 丁膺宾, 张莉珍, 许睿, 等. 基于染色体片段置换系的野生稻粒长QTL-qGL12的精细定位[J]. 中国农业科学, 2018, 51(18): 3435-3444. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201818001.htm