-
开放科学(资源服务)标志码(OSID):
-
核桃分心木被乡间百姓称作胡桃衣,又叫胡桃隔,是一种干燥木质隔膜,位于核桃果仁之间,富含多酚物质[1]. 多酚不仅具有很强的抑菌、抗衰老、抗辐射等生理功效,还能有效减少氧化应激和抑制大分子氧化[2],已成为食品、医药、染色等领域研究的热点课题之一[3],具有较高的经济价值. 我国核桃种植面积居世界首位,然而核桃分心木却未能得到充分的开发利用. 长期以来,核桃分心木作为废弃物丢弃,不仅造成极大的环境污染,更是资源的严重浪费,因此,若能提取核桃分心木中的多酚物质,研究其抗氧化活性,进一步将其应用于食品防腐保鲜等领域,对核桃分心木的资源化利用具有重要意义[4-5]. 多酚具有酚羟基,根据相似相溶原理,在极性大的溶剂中溶解性较强,比如水、乙醇、丙酮,可溶于乙酸乙酯,不溶于乙醚、氯仿、石油醚等[6-7]. 目前多酚提取技术主要集中在有机溶剂、离子沉淀、树脂吸附分离、超临界二氧化碳萃取、热水浸提等方法[8-9]. 利用这些技术进行提取,存在时间长、能耗大、价格昂贵等诸多问题. 超声处理不仅可缩短提取时间,还能减少能量浪费. 超声辅助提取的机理涉及空化作用[10],超声在溶液中产生空化泡,空化泡的迅速产生和破裂会产生强有力的冲击波和二次效应[11-12],如局部高温高压等,从而对周围植物组织和细胞产生破坏[13],可加速溶剂和细胞内溶液的对流和溶质的交换,提高提取效率[14].
本研究拟采用超声辅助提取法从核桃分心木中提取多酚,利用超声过程中产生的机械、空化效应强化植物多酚提取效果,提高多酚的稳定性;考察料液比、处理时间、乙醇浓度、处理温度、超声功率对多酚提取效果的影响;采用多元二次回归方程优化辅以超声处理提取核桃分心木中多酚物质的工艺条件,以常见的自由基-超氧阴离子、羟基自由基为评价指标,研究分心木多酚对其清除作用;分析核桃分心木中多酚的种类及质量分数,为建立测定核桃分心木中多酚单体的高效液相色谱(HPLC)检测方法提供参考依据[15].
Analyzing Polyphenols Response and Exploring Composition and Antioxidant Ability of Walnut Diaphragma Juglandis Fructus
-
摘要:
采用多元二次回归方程对辅以超声处理提取核桃分心木多酚工艺条件进行优化,分析多酚组成并评价其抗氧化性,为核桃分心木开发利用提供技术支持. 以干燥分心木为原料,在单因素试验基础上解析多酚响应变化规律,并选择料液比、处理时间、乙醇浓度和处理温度4个因素进行曲面响应试验,确定多酚超声辅助提取的较佳工艺条件;采用高效液相色谱对分心木中多酚类物质种类进行鉴定并定量分析;以超氧阴离子和羟基自由基的清除率为评价指标,对多酚的抗氧化性进行研究;对分心木超声处理前后的微观结构经扫描电镜进行观察. 结果表明:分心木多酚提取较佳工艺参数为料液比1∶80 g/mL,处理时间21 min,乙醇浓度48%,处理温度61 ℃,基于该条件进行试验得出分心木多酚得率为74.72±1.85 mg/g;分心木中鉴定出4种多酚单体,其中儿茶素、芦丁质量分数较高,没食子酸质量分数次之,槲皮素质量分数最低;分心木多酚对超氧阴离子和羟基自由基的清除能力剂量依赖性较强. 抗坏血酸(Vc)、2,6-二叔丁基对甲酚(BHT)和分心木多酚均能清除超氧阴离子和羟基自由基,清除能力由大到小依次为Vc、分心木多酚、BHT;超声处理能显著破坏分心木表面组织,其结构较为松散、塌陷. 结果可为研究开发天然的抗氧化剂提供理论基础,在拓宽核桃分心木加工利用途径的同时也为提取农产品副产物中生物活性成分提供参考.
Abstract:Ultrasonic assisted extraction of polyphenol from walnut diaphragma juglandis fructus was optimized by multivariate quadratic regression equation, polyphenol composition was analyzed and antioxidant activity of polyphenol in diaphragma juglandis fructus was evaluated to provide technique support forthe development and utilization of diaphragma juglandis fructus polyphenol. The dry diaphragma juglandis fructus was used as the raw material, the response change of diaphragma juglandis fructus polyphenol was analyzed on the basis of single factor experiment, and the four influencing parameters including solid to liquid ratio, treatment time, ethanol concentration and treatment temperature were selected for surface response test to optimize for the better process conditions for ultrasonic-assisted extraction of walnut diaphragma juglandis fructus polyphenol. The types of polyphenol were identified and analyzed by high performance liquid chromatography. The antioxidant properties of diaphragma juglandis fructus polyphenol were investigated with the scavenging rate of superoxide anion and hydroxyl radical as indicators. The microstructure of fructus before and after the extraction was observed by scanning electron microscope. Better processing conditions for ultrasonic assisted diaphragma juglandis fructus polyphenol extraction obtained by multivariate quadratic regression equation design analysis were as follows: 1∶80 g/mL of solid-liquid ratio, 21 min of treatment time, 48% of ethanol concentration and 61 ℃ of treatment temperature. The polyphenol yield under this condition was (74.72±1.85) mg/g. Four kinds of polyphenols were identified, among which the catechin anrutinummass fractions were higher, gallic acidmass fraction was second high, and quercetinmass fractionwas the lowest. The dose dependence of diaphragma juglandis fructus polyphenol scavenging capacity of superoxide anions and hydroxyl radicals was significant. Vc, BHT and diaphragma juglandis fructus polyphenol could scavenge superoxide anions and hydroxyl radicals, the scavenging capacity was Vc > diaphragma juglandis fructus polyphenol > BHT. Ultrasound treatment could significantly destroy diaphragma juglandis fructus surface tissue to make its structure relatively loose and collapsed. The results of this studycould provide a theoretical basis for the research and development of natural antioxidants, and broaden the processing and utilization of walnut diaphragma juglandis fructus, also provide reference for the extraction of bioactive components from by-products of agricultural products.
-
Key words:
- walnut /
- diaphragma juglandis fructus /
- polyphenol /
- antioxidation .
-
表 1 试验因素水平表
水平 因素 料液比(X1)/(g·mL-1) 处理时间(X2)/min 乙醇浓度(X3)/% 处理温度(X4)/℃ -1 1∶70 15 40 55 0 1∶80 20 50 60 1 1∶90 25 60 65 表 2 回归方程的方差分析
来源 平方和 自由度 均方 F值 p值 模型 55.61 14 3.97 14.13 <0.000 1 X1 0.32 1 0.32 1.13 0.306 4 X2 2.27 1 2.27 8.08 0.013 1 X3 0.11 1 0.11 0.39 0.541 3 X4 4.01 1 4.01 14.27 0.002 0 X1X2 1.76 1 1.76 6.24 0.025 5 X1X3 0.62 1 0.62 2.19 0.160 9 X1X4 0.02 1 0.02 0.06 0.817 1 X2X3 1.09 1 1.09 3.88 0.068 9 X2X4 0.30 1 0.30 1.08 0.317 2 X3X4 0.50 1 0.50 1.77 0.204 9 X12 29.29 1 29.29 104.15 <0.000 1 X22 17.05 1 17.05 60.62 <0.000 1 X32 4.15 1 4.15 14.76 0.001 8 X42 14.04 1 14.04 49.92 <0.000 1 残差 3.94 14 0.28 失拟值 0.87 10 0.09 0.11 0.997 4 净误差 3.07 4 0.77 总和 59.55 28 表 3 回归方程的拟合分析
名称 变异系数/% 系数 校正系数 预测系数 信噪比 值 0.72 0.933 9 0.867 8 0.835 5 13.126 -
[1] 洪茜茜, 叶永丽, 张银志, 等. 核桃分心木化学成分及功能活性研究进展[J]. 食品研究与开发, 2021, 42(7): 194-202. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK202107033.htm [2] 常君, 姚小华, 张亚波, 等. 松针刺盘孢菌侵染对薄壳山核桃不同抗性品种酶活性和酚类物质的影响[J]. 西南大学学报(自然科学版), 2022, 44(3): 52-58. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2022.03.006 [3] 缪福俊, 宁德鲁. 核桃多酚类物质生物活性研究进展[J]. 中国油脂, 2021, 46(1): 48-51. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZYZZ202101011.htm [4] LONG G Q, WANG J, MIN D Y, et al. Research Progress on Flavonoids from the Roots of Sophora Flavescens Alt. and their Biological Activities [J]. Asian Journal of Traditional Medicines, 2021, 16(6): 385-397. [5] PANJA P. Green Extraction Methods of Food Polyphenols from Vegetable Materials [J]. Current Opinion in Food Science, 2018, 23(10): 173-182. [6] CUJIC N, SAVIKIN K, JANKOVIC T, et al. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique [J]. Food Chemistry, 2016, 194(3): 135-142. [7] AMIRABBASI S, ELHAMIRAD A H, SAEEDIASL M R, et al. Optimization of Polyphenolic Compounds Extraction Methods from Okra Stem [J]. Journal of Food Measurement and Characterization, 2021, 15(1): 717-734. doi: 10.1007/s11694-020-00641-8 [8] FOGARASI M, SOCACIU M I, SȂLȂGEAN C D, et al. Comparison of Different Extraction Solvents for Characterization of Antioxidant Potential and Polyphenolic Composition in Boletus Edulisand Cantharellus Cibarius Mushrooms from Romania [J]. Molecules, 2021, 26(24): 7508. doi: 10.3390/molecules26247508 [9] SELVAKUMAR P, SIVASHANMUGAM P. Studies on the Extraction of Polyphenolic Compounds from Pre-consumer Organic Solid Waste [J]. Journal of Industrial and Engineering Chemistry, 2020, 82(10): 130-137. [10] SUNGPUD C, PANPIPAT W, YOON A S, et al. Ultrasonic-assisted Virgin Coconut Oil Based Extraction for Maximizing Polyphenol Recovery and Bioactivities of Mangosteen Peels [J]. Journal of Food Science and Technology, 2020, 57(11): 4032-4043. [11] JOSÉ ALIAÑO GONZÁLEZ M, CARRERA C, BARBERO G F, et al. A Comparison Study between Ultrasound-assisted and Enzyme-assisted Extraction of Anthocyanins from Blackcurrant (Ribesnigrum L. ) [J]. Food Chemistry: X, 2021, 13(3): 100192. [12] MONTES L, VERDU MG, HINOJOSA I, et al. Impact of Drying on the Sodium Alginate Obtained after Polyphenols Ultrasound-assisted Extraction from Ascophyllum Nodosum Seaweeds [J]. Carbohydrate Polymers, 2021, 272(11): 118455. [13] FERNANDES F A N, FONTELES T V, RODRIGUES S, et al. Ultrasound-assisted Extraction of Anthocyanins and Phenolics from Jabuticaba (Myrciaria cauliflora) Peel: Kinetics and Mathematical Modeling [J]. Journal of Food Science and Technology, 2020, 57(6): 2321-2328. [14] BEGUM Y A, DEKA S C. Ultrasound-assisted Extracted Dietary Fibre from Culinary Banana Bract as Matrices for Anthocyanin: Its Preparation, Characterization and Storage Stability [J]. Journal of Food Science and Technology, 2020, 57(6): 2354-2363. [15] SHENG F, HU B Y, JIN Q, et al. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC [J]. Molecules, 2021, 26(10): 3013. [16] 梁杏. 核桃饼粕多酚提取纯化及其抗氧化和降脂活性初步研究[D]. 昆明: 云南中医学院, 2016. [17] 杨喆, 万山, 张乔会, 等. 响应面法优化山杏核壳总黄酮提取工艺及其抗氧化性的研究[J]. 食品工业科技, 2015, 36(6): 279-284. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201506070.htm [18] 王新然. 核桃瓣膜多酚类化合物组成及生物活性分析[D]. 西安: 陕西师范大学, 2019. [19] 史斌斌, 张文娥, 李雪, 等. 铁核桃叶片多酚类物质含量及其抗氧化活性[J]. 园艺学报, 2017, 44(1): 23-32. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201701003.htm [20] 丁建英, 王晓飞, 张丽, 等. 枇杷叶多酚超声波辅助提取工艺优化及其抗氧性分析[J]. 南方农业学报, 2018, 49(2): 340-347. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201802022.htm [21] JORGEE P A Z. Ultrasound-assisted Extraction of Polyphenols from Native Plants in the Mexican Desert [J]. Ultrasonics Sonochemistry, 2015, 22(1): 474-481. [22] KUMAR A, RAO P S. Optimization of Pulsed-mode Ultrasound Assisted Extraction of Bioactive Compounds from Pomegranate Peel Using Response Surface Methodology [J]. Journal of Food Measurement and Characterization, 2020, 14(6): 3493-3507. [23] BOCHI V C, BARCIA M T, RODRIGUES D, et al. Polyphenol Extraction Optimisation from Ceylon Gooseberry (Dovyalis hebecarpa) Pulp [J]. Food Chemistry, 2014, 164(12): 347-354. [24] ZIVKOVIC J, ŠAVIKIN K, JANKOVIĈ T, et al. Optimization of Ultrasound-assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology [J]. Separation and Purification Technology, 2018, 194(4): 40-47. [25] 李瑞, 梁永林, 阚欢, 等. 响应面法优化云南核桃分心木多酚提取工艺[J]. 西南林业大学学报(自然科学), 2021, 41(2): 159-165. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YNLX202102020.htm [26] 刘静, 黄慧福, 刘继华, 等. 响应面优化核桃分心木多酚超声辅助提取工艺[J]. 食品研究与开发, 2020, 41(23): 155-160, 191. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK202023030.htm [27] 陈冠林, 刘学文, 韩门娣, 等. 分心木多酚提取工艺及其抗氧化活性研究[J]. 食品研究与开发, 2017, 38(5): 67-71, 95. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201705018.htm [28] 赵娟娟. 分心木黄酮超声-微波协同提取及抗氧化性研究[J]. 食品研究与开发, 2018, 39(18): 70-76. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201818014.htm [29] 陆胜波, 史斌斌, 张文娥, 等. 泡核桃不同器官多酚类物质组分及含量差异分析[J]. 经济林研究, 2020, 38(2): 104-113. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ202002013.htm [30] 王鹏, 刘明秀, 李晓林, 等. 普通枇杷与野生枇杷总黄酮、总酚及抗氧化活性分析[J]. 西南大学学报(自然科学版), 2019, 41(12): 33-39. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.12.005 [31] 邹灵秀, 陈谌, 杨小玲, 等. 白藜芦醇对兔成纤维细胞氧化应激损伤的保护作用研究[J]. 西南大学学报(自然科学版), 2020, 42(5): 51-56. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.05.007