留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

基于块稀疏信号重构的高分辨率ISAR成像算法

上一篇

下一篇

冯俊杰1,2,张弓1. 基于块稀疏信号重构的高分辨率ISAR成像算法[J]. 西南师范大学学报(自然科学版), 2018, 43(10): 74-79. doi: 10.13718/j.cnki.xsxb.2018.10.014
引用本文: 冯俊杰1,2,张弓1. 基于块稀疏信号重构的高分辨率ISAR成像算法[J]. 西南师范大学学报(自然科学版), 2018, 43(10): 74-79. doi: 10.13718/j.cnki.xsxb.2018.10.014
FENG Jun-jie1,2, ZHANG Gong1. High Resolution ISAR Imaging Algorithm Based on Block Sparse Signal Recovery[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(10): 74-79. doi: 10.13718/j.cnki.xsxb.2018.10.014
Citation: FENG Jun-jie1,2, ZHANG Gong1. High Resolution ISAR Imaging Algorithm Based on Block Sparse Signal Recovery[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(10): 74-79. doi: 10.13718/j.cnki.xsxb.2018.10.014

基于块稀疏信号重构的高分辨率ISAR成像算法

High Resolution ISAR Imaging Algorithm Based on Block Sparse Signal Recovery

  • 摘要: 为实现快速高分辨率逆合成孔径雷达(Inverse synthetic aperture radar,ISAR)成像,充分利用目标的内在块稀疏结构信息,提出一种块平滑l0范数稀疏重构ISAR成像算法.首先,将ISAR稀疏成像转化为块l0范数的优化问题,采用一阶负指数函数趋近块l0范数.其次,采用单循环步骤代替平滑l0范数算法中的双循环结构,减小控制参数的间隔,实现对块稀疏信号的优化重构.该算法能够在块稀疏度未知时利用ISAR目标固有的内在结构特征进行高分辨率成像.仿真实验结果证实该算法的成像质量高且快于其它算法.
  • 加载中
  • [1] THAYAPARAN T,FRANGOS P,STANKOVIC L J.Signal Processing Techniques for ISAR and Feature Extraction[J].IET Signal Process,2008, 2(3):189-191.
    [2] CHEN Y J,ZHANG Q,YUAN N,et al.An Adaptive ISAR Imaging Considered Task Scheduling Algorithm for Multi-Function Phased Array Radars[J]. IEEE Trans on Image Process,2015,63(19):5096-5110.
    [3] 彭立,杨武年,黄瑾.川西高原多时相干涉雷达土地覆盖分类研究[J].西南大学学报(自然科学版),2016,38(5):125-132.
    [4] CHARTRAND R.Exact Reconstruction of Sparse Signals Via Nonconvex Minimization[J].IEEE Signal Process Letters,2007,14(10):707-710.
    [5] NEEDELL D,VERSHYNIN R.Uniform Uncertainty Principle and Signal Recovery Via Regularized Orthogonal Matching Pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334.
    [6] ELDAR Y C,MISHALI M.Robust Recovery of Signals from A Structured Union of Subspaces[J].IEEE Transactions onInformation Theory,2009,55(11):5302-5316.
    [7] CETIN M,STOJANOVIC I,ONHON N,et al.Sparsity-Driven Synthetic Aperture Radar Imaging:Reconstruction,Autofocusing,Moving Targets,and Compressed Sensing[J].IEEE Signal Processing Magazine,2014,31(4):27-40.
    [8] ZHAO L F,WANG L,BI G,et al.An Autofocus Technique for High-resolution Inverse Synthetic Aperture Radar Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(10):6392-6403.
    [9] 顾福飞,池龙,张群,等.基于压缩感知的稀疏阵列MIMO雷达成像方法[J].电子与信息学报,2011,33(10):2452-2457.
    [10] DUAN H,ZHANG L,FANG J,et al.Pattern-Coupled Sparse Bayesian Learning for Inverse Synthetic Aperture Radar Imaging[J].IEEE Signal Processing Letters,2015,22(11):1995-1999.
    [11] MOHIMANI H,BABAIE-ZADEH M,JUTTEN C.A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed Norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
    [12] ELDAR Y C,KUPPINGER P,BOLCSKEI H.Block-Sparse Signals:Uncertainty Relations and Efficient Recovery[J].IEEE Transactions on Signal Processing,2010,58(6):3042-3054.
    [13] BARANIUK R G,CEVHER V,DUARTE M F,et al.Model-Based Compressive Sensing[J].IEEE Transactions on InformationTheory,2010,56(4):1982-2001.
    [14] GHALEHJEGH H S,BABAIE-ZADEH M,JUTTEN C.Fast Block-sparse Decomposition Based on SL0[C]//Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation:Berlin,Germany:Springer 2010:426-433.
    [15] VAN DEN B,FRIEDLANDER M P.Sparse Optimization with Least-squares Constraints[J].SIAM Journal on Optimization,2011,21(4):1201-1229.
    [16] WIPF D P,RAO B D.An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem[J].IEEE Transactions on Signal Processing,2007,55(7):3704-3716.
  • 加载中
计量
  • 文章访问数:  886
  • HTML全文浏览数:  580
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-28

基于块稀疏信号重构的高分辨率ISAR成像算法

  • 1. 南京航空航天大学 电子信息工程学院, 南京 211106;
    2. 六盘水师范学院 电气工程学院, 贵州 六盘水 553004

摘要: 为实现快速高分辨率逆合成孔径雷达(Inverse synthetic aperture radar,ISAR)成像,充分利用目标的内在块稀疏结构信息,提出一种块平滑l0范数稀疏重构ISAR成像算法.首先,将ISAR稀疏成像转化为块l0范数的优化问题,采用一阶负指数函数趋近块l0范数.其次,采用单循环步骤代替平滑l0范数算法中的双循环结构,减小控制参数的间隔,实现对块稀疏信号的优化重构.该算法能够在块稀疏度未知时利用ISAR目标固有的内在结构特征进行高分辨率成像.仿真实验结果证实该算法的成像质量高且快于其它算法.

English Abstract

参考文献 (16)

目录

/

返回文章
返回