留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

矩阵Hadamard积谱半径的新上界

上一篇

下一篇

钟琴1,牟谷芳2. 矩阵Hadamard积谱半径的新上界[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 1-5. doi: 10.13718/j.cnki.xsxb.2018.12.001
引用本文: 钟琴1,牟谷芳2. 矩阵Hadamard积谱半径的新上界[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 1-5. doi: 10.13718/j.cnki.xsxb.2018.12.001
ZHONG Qin1, MOU Gu-fang2. New Upper Bounds on the Spectral Radius for the Hadamard Product of Matrices[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(12): 1-5. doi: 10.13718/j.cnki.xsxb.2018.12.001
Citation: ZHONG Qin1, MOU Gu-fang2. New Upper Bounds on the Spectral Radius for the Hadamard Product of Matrices[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(12): 1-5. doi: 10.13718/j.cnki.xsxb.2018.12.001

矩阵Hadamard积谱半径的新上界

New Upper Bounds on the Spectral Radius for the Hadamard Product of Matrices

  • 摘要: 对于两个非负矩阵 A 和 B 的Hadamard积,利用特征值包含域定理给出谱半径的新上界估计式.数值例子表明新估计式在某些情况下比现有的估计式更为精确,并且这些估计式只依赖于两个非负矩阵的元素,更容易计算.
  • 加载中
  • [1] HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. 北京:人民邮电出版社, 2005.
    [2] FANG M Z. Bounds on Eigenvalues of Hadamard Product and the Fan Product of Matrices[J]. Linear Algebra Appl, 2007, 425(1):7-15.
    [3] HUANG R. Some Inequalities for the Hadamard Product and the Fan Product of Matrices[J]. Linear Algebra Appl, 2008, 428(7):1551-1559.
    [4] LIU Q B, CHEN G L. On Two Inequalities for the Hadamard Product and the Fan Product of Matrices[J]. Linear Algebra Appl, 2009, 431(5):974-984.
    [5] 逄明贤. 矩阵谱论[M]. 长春:吉林大学出版社, 1989.
    [6] LI Y T, LI Y Y, WANG R W, et al. Some New Bounds on Eigenvalues of the Hadamard Product and the Fan Product of Matrices[J]. Linear Algebra Appl, 2010, 432:536-545.
    [7] LIU Q B, CHEN G L, ZHAO L L. Some New Bounds on the Spectral Radius of Matrices[J]. Linear Algebra Appl, 2010, 432(4):936-948.
    [8] GUO Q P, LI H B, SONG M Y. New Inequalities on Eigenvalues of the Hadamard Product and the Fan Product of Matrices[J]. J Inequal Appl, 2013, 2013(1):433-443.
    [9] HUANG Z G, XU Z, LU Q. Some New Estimations for the Upper and Lower Bounds for the Spectral Radius of Nonnegative Matrices[J]. J Inequal Appl, 2015, 2015(1):83-96.
    [10] CHEN F B, REN X H, HAO B. Some New Eigenvalue Bounds for the Hadamard Product and the Fan Product of Matrices[J]. 数学杂志, 2014, 34(5):895-903.
    [11] ZHAO L L. Two Inequalities for the Hadamard Product of Matrices[J]. J Inequal Appl, 2012, 2012(1):122-127.
    [12] CHENG G H, RAO X. Some Inequalities for the Spectral Radius of the Hadamard Product of Two Nonnegative Matrices[J]. J Math Inequal, 2013, 7(3):529-534.
    [13] CHENG G H. New Bounds for Eigenvalues of the Hadamard Product and the Fan Product of Matrices[J]. Taiwan J Math, 2014, 18(1):305-312.
    [14] 孙德淑. 非负矩阵Hadamard的谱半径上界和M-矩阵Fan积的最小特征值下界的新估计[J]. 西南师范大学学报(自然科学版), 2016, 41(2):7-11.
  • 加载中
计量
  • 文章访问数:  853
  • HTML全文浏览数:  692
  • PDF下载数:  140
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-10-31

矩阵Hadamard积谱半径的新上界

  • 1. 四川大学锦江学院 数学教学部, 四川 彭山 620860;
    2. 乐山师范学院 数学与信息科学学院, 四川 乐山 614000

摘要: 对于两个非负矩阵 A 和 B 的Hadamard积,利用特征值包含域定理给出谱半径的新上界估计式.数值例子表明新估计式在某些情况下比现有的估计式更为精确,并且这些估计式只依赖于两个非负矩阵的元素,更容易计算.

English Abstract

参考文献 (14)

目录

/

返回文章
返回