有关李型单群的$|cd(G)|-1$个特征标次数的图
摘要: 文献[12]中已证明对于有限可解群$G$,都有$n(\Delta(G-m))\leq2$,其中$m\in cd(G)$.对于不可解群,我们考虑单群的情况.若$G$交换或$cd(G)=\{1,a\}$,且$m=a$时,$cd(G)\backslash\{m\}=\varnothing$或$\{1\}$,此时定义$n(\Delta(G-m))=0$.现令$G$是一个非交换单群.由有限单群分类定理知$G$是下列之一:散在单群,$n$大于等于5的交错单群$A_{n}$,和李型单群.文献[13]中我们已讨论证明了交错单群$G\cong A_{n},n\geq 7$或$G$是散在单群,有$n(\Delta(G-m))\leq2$.由于$A_{5}\cong L_{2}(4)\cong L_{2}(5)$,$A_{6}\cong L_{2}(9)$.且$cd(A_{5})=\{1,3,4,5\},cd(A_{6})=\{1,5,8,9,10\}$,即若$G\cong A_{5}$或$A_{6}$,则$n(\Delta(G-m))\leq3$.本文主要是讨论李型单群的情况,可证明如下结论:若$G$是李型单群,则对任意$m\in cd(G)$,$\Delta(G-m)$至多有三个连通分支,即$n(\Delta(G-m))\leq3$.