一种基于属性贝叶斯网络的行为识别模型
-
摘要: 针对传统行为识别方法仅利用底层特征识别的不足,提出了一种将动作属性与贝叶斯网络相结合的行为识别方法.首先,提取视频中的时空兴趣点及其3D-SIFT特征描述符,用词袋的方法建立时空词典对视频序列进行表示;然后,利用底层特征训练属性分类器,构造由底层特征到高层特征的映射,将底层特征样本经过属性分类器后得到行为—属性的样本信息,并采用MAP(最大后验概率)准则学习贝叶斯网络结构,从而建立一种基于属性贝叶斯网络的行为识别模型.实验结果表明该模型能有效地进行行为识别.
-
-
计量
- 文章访问数: 381
- HTML全文浏览数: 72
- PDF下载数: 1
- 施引文献: 0