关于 log-Minkowski 不等式的注记
Remark on log-Minkowski Inequality
-
摘要: 研究了 L 0空间中的 log-Minkowski 不等式猜想。利用著名的 Blaschke-Santaló不等式与凸函数的性质证明了:当其中一个凸体为球时,log-Minkowski 不等式是正确的,且等号成立当且仅当另一凸体也为球。进一步得到了关于中心对称凸体的 Urysohn 不等式。Abstract: In this paper the conjecture has been investigated for log-Minkowski inequality in L 0 .Via the fa-mous Blaschke-Santalóinequality and the properties of convex functions,and a proof has been given of the log-Minkowski inequality for which a convex body is a ball and equality holds if and only if another convex body also is a ball.Finally,the Urysohn inequality for origin-symmetric convex bodies has been obtained.
-
-
计量
- 文章访问数: 869
- HTML全文浏览数: 616
- PDF下载数: 2
- 施引文献: 0