留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

Chebyshev-Legendre谱方法解广义RLW 方程的误差分析

上一篇

下一篇

唐致娣,赵廷刚. Chebyshev-Legendre谱方法解广义RLW 方程的误差分析[J]. 西南大学学报(自然科学版), 2014, 36(1): 072-076.
引用本文: 唐致娣,赵廷刚. Chebyshev-Legendre谱方法解广义RLW 方程的误差分析[J]. 西南大学学报(自然科学版), 2014, 36(1): 072-076.
Citation:

Chebyshev-Legendre谱方法解广义RLW 方程的误差分析

  • 摘要: 考虑一类具有Dirichlet边界条件的广义RLW 方程(即长波方程),通过将Legendre谱方法在Chebyshev点上实现,建立求解该方程的Chebyshev-Legendre谱方法的离散格式,这种配点法结合了Legendre方法的稳定性和Chebyshev方法计算方便的优点.选取基函数构造系数矩阵,采用矩阵分解简化方程,提高了计算效率,证明了此离散格式的稳定性和收敛性,给出了近似解的敛速估计,并进行了数值实验.
  • 加载中
  • 加载中
计量
  • 文章访问数:  448
  • HTML全文浏览数:  129
  • PDF下载数:  1
  • 施引文献:  0
出版历程

Chebyshev-Legendre谱方法解广义RLW 方程的误差分析

  • 1. 兰州交通大学数理与软件工程学院,兰州730070;2. 兰州城市学院,兰州730070

摘要: 考虑一类具有Dirichlet边界条件的广义RLW 方程(即长波方程),通过将Legendre谱方法在Chebyshev点上实现,建立求解该方程的Chebyshev-Legendre谱方法的离散格式,这种配点法结合了Legendre方法的稳定性和Chebyshev方法计算方便的优点.选取基函数构造系数矩阵,采用矩阵分解简化方程,提高了计算效率,证明了此离散格式的稳定性和收敛性,给出了近似解的敛速估计,并进行了数值实验.

English Abstract

参考文献 (0)

目录

/

返回文章
返回