-
从1984年,Karmarkar[1]提出内点算法以来,内点算法的研究一直是一个热门的课题.随着研究的不断深入,研究者提出了许多不同类型的内点算法.从初始点的选取不同可分为:可行内点算法和不可行内点算法.不可行内点算法的优势是:不要求初始点严格可行,仅要求在非负象限的内部.由于这种类型的点容易获得,故在实际计算中显得尤为重要.
Lustig[2]首次提出了不可行内点算法,随后Masakazu[3]提出了原始-对偶不可行内点算法.这些早期的著作均没有给出不可行内点算法的多项式复杂度,直到Zhang[4]给出了第一个具有多项式复杂度O(n2 L)的不可行算法,然而,这个算法的复杂度较高.为了降低复杂度,众多学者做了大量研究工作[5-10].目前,不可行内点算法的最低复杂度为O(nL),这一结果仅对窄邻域不可行内点算法成立,并且窄邻域不可行内点算法的一般复杂度为O(n1.5L).对宽邻域而言一般算法的复杂度为O(n2L),目前最低复杂度为O(n1.5L).
本文将给出一个复杂度为O(n1.5L)的宽邻域不可行内点算法,该算法迭代在Ai[11]等提出的宽邻域内.最后,通过数值试验说明该算法是有效的.
本文中:e表示分量全为1的列向量;‖·‖表示向量的2 -范数.对于向量x,s∈
$ {{\mathbb{R}}^\mathit{n}} $ ,xs∈$ {{\mathbb{R}}^\mathit{n}} $ 表示对应分量的乘,(xs)min表示xs∈$ {{\mathbb{R}}^\mathit{n}} $ 的最小分量;让$ \mathit{\boldsymbol{p}} = {\mathit{\boldsymbol{x}}^{ - \frac{1}{2}}}{\mathit{\boldsymbol{s}}^{\frac{1}{2}}}, \mathit{\boldsymbol{\tilde r}} = {\left( {\mathit{\boldsymbol{xs}}} \right)^{\frac{1}{2}}}\mathit{\boldsymbol{r}} $ ;另外,对于h∈$ {{\mathbb{R}}^\mathit{n}} $ ,我们记:h+=max{0,h}和h-=h-h+.
A Wide Neighborhood Infeasible-Interior-Point Method for Linear Programming
-
摘要: 提出了一个求解线性规划的不可行内点算法.该算法的特点是:一方面使用了宽邻域,因此数值实验表明具有较好的计算效果;另一方面,通过分析获得它的多项式复杂度为O(n1.5L),这是宽邻域不可行内点算法的最好复杂度.Abstract: In this paper, we propose a wide neighborhood infeasible-interior-point method for linear programming.The characteristics of the proposed algorithm are as follows:on the one hand, the proposed algorithm is based on a wide neighborhood and has a good calculation results, which is showed by the experiments.On the other hand, by analyzing, we achieve the iteration complexity O(n1.5L) for the proposed algorithm, which is the best complexity result for a wide neighborhood infeasible-interior-point method.
-
Key words:
- linear programming /
- infeasible-interior-point method /
- wide neighborhood /
- polynomial complexity .
-
表 1 线性规划
问题 m n 算法1 算法2 时间/s 次数/次 对偶间隙 时间/s 次数/次 对偶间隙 adlittle 56 138 0.031 2 25 7.734 7e-006 0.124 8 35 3.277 8e-008 blend 74 114 0.015 6 23 1.653 6e-010 0.046 8 30 4.108 7e-008 bandm 305 472 0.218 4 39 1.095 7e-008 1.201 2 50 2.992 7e-007 beaconfd 173 295 0.218 4 23 1.095 7e-008 1.201 2 40 2.992 7e-007 e226 223 472 0.156 0 43 6.038 6e-010 0.421 2 61 4.904 0e-007 fitlp 627 1 677 1.934 4 38 8.709 9e-008 7.644 0 60 1.140 3e-008 scsd6 147 1 350 0.031 2 22 1.128 0e-009 0.265 2 42 1.203 2e-007 scsd8 397 2 750 0.468 0 21 4.243 4e-009 0.499 2 43 2.145 5e-007 sc105 105 163 0.015 6 22 1.061 1e-007 0.046 8 32 5.491 5e-007 scfxm3 990 1 800 0.546 0 56 4.411 1e-006 1.809 6 76 1.211 2e-008 share2b 96 162 0.015 6 23 6.898 2e-009 0.062 4 33 3.839 3e-010 woodw 1 098 8 418 2.745 6 57 2.432 6e-012 9.750 1 93 6.508 2e-011 -
[1] doi: http://dl.acm.org/citation.cfm?id=808695&dl=ACM&coll=DL KARMARKAR N. A New Polynomial-Time Algorithm for Linear Programming [J]. Combinatorica, 1984, 4(2): 302-311. [2] doi: https://link.springer.com/article/10.1007/BF01588785 LUSTIG I J. Feasibility Issues in a Primal-Dual Interior-Method for Linear Programming [J]. Math Program, 1991, 49(1-3): 145-162. [3] MASAKAZU K, NIMROD M, SHINJI M. A Primal-Dual Infeasible-Interior-Point Algorithm for Linear Programming [J]. Math Program, 1993, 61(1-3): 263-280. doi: 10.1007/BF01582151 [4] ZHANG Y. On the Convergence of a Class of Infeasible Interior-Point Method for the Horizontal Linear Complementarity Problem [J]. SIAM J Optim, 1994, 4(1): 208-227. doi: 10.1137/0804012 [5] MIZUNO S. Polynomiality of Infeasible-Interior-Point Algorithms for Linear Programming [J]. Math Program, 1994, 67(1-3): 109-119. doi: 10.1007/BF01582216 [6] POTRA F A. An Infeasible-Interior-Point Predictor-Corrector Algorithm for Linear Programming [J]. SIAM J Optim, 1996, 6(1): 19-32. doi: 10.1137/0806002 [7] POTRA F A. A Quadratically Convergent Predictor-Corrector Method for Solving Linear Programs from Infeasible Starting Points [J]. Math Program, 1994, 67(1-3): 383-406. doi: 10.1007/BF01582228 [8] KOJIMA M, NOMA T S, YOSHISE A. Global Convergence in Infeasible-Interior-Point Algorithms [J]. Math Program, 1994, 65(1-3): 43-72. doi: 10.1007/BF01581689 [9] WRIGHT S J. Primal-Dual Interior-Point Methods [M]. Philsdephia: SIAM Publications, 1997. [10] YE Y. Interior Point Algorithms: Theory and Analysis [M]. Hoboken: John Wiley & Sons, 2011. [11] AI W, ZHANG S. An O(nL)-Iteration Primal-Dual Path-Following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP [J]. SIAM J Optim, 2005, 16(2): 400-417. doi: 10.1137/040604492 [12] YANG X, ZHANG Y, LIU H. A Wide Neighborhood Infeasible-Interior-Point Method with Arc-Search for Linear Programming [J]. J App Math Comput, 2016, 51(1-2): 209-225. doi: 10.1007/s12190-015-0900-z [13] 杨喜美, 刘红卫, 张因奎.带有新的迭代格式的内点算法[J].应用数学与力学, 2014, 35(9): 1063-1070. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201409012.htm [14] BROWNE S, DONGARRA J, GROSSE E, et al. The Netlib Mathematical Software Repository [CP/OL]. (1995-09-15) [2015-06-10]. http: //www. dlib. org/dlib/september95/netlib/09browne. html.
计量
- 文章访问数: 551
- HTML全文浏览数: 266
- PDF下载数: 2
- 施引文献: 0