-
Ni(3d84s2)自身的价电子排布使其能形成具有优异导电性的材料[1].而Ni与Se在电负性上的微小差异,使Ni与Se可以形成种类繁多的硒化镍化合物[2].研究结果表明,在常温下,硒化镍化合物有3种稳定的相:NiSe2,Ni1-xSe(x=0~0.15),Ni3Se2[3].硒化镍化合物具有良好的电学和磁学性质[4-6],这引起了人们极大的研究兴趣.在过去的几十年,人们将大量的时间和精力投入到硒化镍化合物的研究之中[7-9],已经尝试了用多种方法制备硒化镍化合物,包括固相合成[10]、分子前体[11]、直接元素反应[12]、超声合成[13]和机械合金化[14].不同形貌和结构特征的硒化镍化合物被制备出来[3, 15-20],并被运用到电导[21]、太阳能电池[9]、锂离子电池[4]和能量存储[6]等领域.
YUAN B X等人[16]在实验中改变油胺与1-十八烷烯的物质的量之比得到不同晶体结构的NiSe2;ZHANG W B等人[20]以NiCl2·6H2O和Se粉为原料,在反应釜中经高温高压反应得到了形貌规则的八面体NiSe2,从实验和理论两方面研究了NiSe2的性质,给出了NiSe2的不同形貌模型;ZHANG G Q等人[22]在EG溶液中加入0.6 g表面活性剂聚乙烯吡咯烷酮(PVP),利用柯肯达尔效应诱导合成中空球形的硒化镍化合物,并对硒化镍相应的性质进行了研究.然而,这些合成方法条件苛刻,要么溶剂毒性大,要么设备专业化太强,局限性明显.目前,溶剂热法合成硒化镍化合物因其设备简单,原材料易得,操作安全,溶剂毒性低,环境污染小,而得到广泛应用.在此背景下,本研究使用一缩二乙二醇(DEG)为溶剂,改变Ni与Se的原料配比、反应温度和反应时间,制备出了不同形貌的硒化镍半导体纳米材料,运用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)的拉曼光谱对所得产物进行表征,利用能谱仪(EDS)分析产物的成分,利用电化学工作站[23]测试了其性能.
Synthesis of NiSe2 and Its Electrochemical Properties
-
摘要: 采用溶剂热法在一缩二乙二醇(C4H10O3)中一步合成二硒化镍纳米材料,反应中添加十六烷基三甲基溴化铵(CTAB)和聚乙烯吡咯烷酮(PVP)为表面活性剂.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、能谱仪(EDS)和拉曼光谱对产物进行了表征,利用电化学工作站对其电化学性能进行测试.结果表明,形貌规则的多面体和树枝状的产物被成功合成制备.通过控制镍硒比(n(Ni):n(Se))、反应时间和反应温度以合成不同形貌的二硒化镍.Abstract: NiSe2 nanomaterials were successfully synthesized via a simple mild solvothermal method by using cetyl-trimethyl ammonium bromide (CTAB) and polyvinyl pyrrolidone (PVP) as the surfactants.In the process, diethylene glycol (DEG) was used as solvent, NiCl2·6H2O as Ni source and SeO2 as Se source. The structure and morphology of the products were characterized by an X-ray diffractomer (XRD), field emission scanning electron microcopy(FESEM), energy disperse spectroscopy (EDS) and Raman spectroscopy. Their electrochemical performance was tested by electrochemical workstation. The results indicated that uniform polyhedron and dendritic products were successfully synthesized. The influences of the mole ratio of NiCl2·6H2O to SeO2, and reactive time and temperature on the size and morphology of NiSe2 were investigated.
-
Key words:
- solvothermal synthesis /
- nickel diselenides /
- octahedron .
-
[1] 杨彩凤, 秦丽溶, 赵建伟, 等.泡沫镍负载Cu/CuO微纳结构的制备及其对抗坏血酸的检测研究[J].西南大学学报(自然科学版), 2015, 37(5): 112-117. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201505018.htm [2] doi: https://www.researchgate.net/publication/231530929_A_Novel_Mild_Route_to_Nanocrystalline_Selenides_at_Room_Temperature WANG W Z, GEN G Y, YAN P, et al. A Novel Mild Route to Nanocrystalline Selenides at Room Temperature [J]. J Am Chem Soc, 1999, 121(6): 4062-4063. [3] ZHUANG Z B, PENG Q, ZHUANG J, et al. Controlled Hydrothermal Synthesis and Structural Characterization of a Nickel Selenide Series [J]. Chemistry, 2006, 12(1): 211-217. doi: 10.1002/(ISSN)1521-3765 [4] MI L W, SUN H, DING Q, et al. 3D Hierarchically Patterned Tubular NiSe with Nano-/Microstructures for Li Ion Battery Design [J]. Dalton Transactions, 2012, 41(40): 12595-12600. doi: 10.1039/c2dt31787g [5] PAPKE B L, TUTUNJIAN P N. Applications of 13C NMR to Predict Low Temperature Viscosity Performance of Base Oils [J]. Tribotest, 2006, 12(3): 211-222. doi: 10.1002/(ISSN)1557-685X [6] doi: https://www.researchgate.net/publication/244145625_Lithium_electrochemistry_of_NiSe_2_A_new_kind_of_storage_energy_material XUE M Z, Fu Z W. Lithium Electrochemistry of NiSe2: A New Kind of Storage Energy Material [J]. Electrochemistry Communications, 2006, 8(2): 1855-1862. [7] HAN Z H, YU S H, LI Y P, et al. Convenient Solvothermal Synthesis and Phase Control of Nickel Selenides with Different Morphologies [J]. Chem Mater, 1999, 11(9): 2302-2304. doi: 10.1021/cm990198q [8] FAN H, ZHANG M F, ZHANG X W, et al. Hydrothermal Growth of NiSe2 Tubular Microcrystals Assisted by PVA [J]. J Cryst Growth, 2009, 311(20): 4530-4534. doi: 10.1016/j.jcrysgro.2009.08.005 [9] GONG F, XU X, LI Z Q, et al. NiSe2 as an Efficient Electrocatalyst for a Pt-Free Counter Electrode of Dye-Sensitized Solar Cells [J]. Chem Commun, 2013, 49(14): 1437-1439. doi: 10.1039/c2cc38621f [10] PARKIN I P. Solid State Metathesis Reaction For Metal Borides, Silicides, Pnictides and Chalcogenides: Ionic or Elemental Pathways [J]. Chem Soc Rev, 1996, 25(3): 199-207. doi: 10.1039/cs9962500199 [11] BRENNAN J G, SIEGRIST T, KWON Y U, et al. Steigerwald Ni23Se12(PEt3)13. An Intramolecular Intergrowth of NiSe and Ni [J]. J AM CHEM SOC, 1992, 114(26): 10334-10338. doi: 10.1021/ja00052a034 [12] doi: https://www.researchgate.net/publication/255740016_Convenient_room-temperature_amine-assisted_routes_to_metal_sulfides_selenides_and_tellurides DUSASTRE V, OMAR B, PARKIN I P, et al. Convenient, Room-Temperature, Amine-Assisted Routes to Metal Sulfides, Selenides and Tellurides [J]. J Chem Soc, Dalton Trans, 1997, 231(19): 3505-3508. [13] GE J P, LI Y D. Ultrasonic Synthesis of Nanocrystals of Metal Selenides and Tellurides [J]. J Mate Chem, 2003, 13(4): 911-915. doi: 10.1039/b210077k [14] doi: https://www.researchgate.net/publication/243327933_Nucleation_and_growth_of_nanocrystalline_pyrite_nickel_diselenide_by_mechanical_alloying CAMPOS C E M, de LIMA J C, GRANDI T A, et al. Nucleation and Growth of Nanocrystalline Pyrite Nickel Diselenide by Mechanical Alloying [J]. Solid State Communications, 2003, 128(6/7): 229-234. [15] CHEN S G, ZENG K, SONG Y D, et al. Systematical Shape Evolution of Hexagonal NiSe Crystals Caused by Mixed Solvents and Ammonium Chloride [J]. J Cryst Growth, 2012, 358: 57-63. doi: 10.1016/j.jcrysgro.2012.08.010 [16] YUAN B X, LUAN W L, TU S T. One-Step Solvothermal Synthesis of Nickel Selenide Series: Composition and Morphology Control [J]. Cryst Eng Comm, 2012, 14(6): 2145-2151. doi: 10.1039/c2ce06474j [17] SHI W D, ZHANG X, CHE G B. Hydrothermal Synthesis and Electrochemical Hydrogen Storage Performance of Porous Hollow NiSe Nanospheres [J]. Int J Hydrogen Energ, 2013, 38(17): 7037-7045. doi: 10.1016/j.ijhydene.2013.03.145 [18] LI J, JIN Z G, LIU T, et al. Chemical Synthesis of MSe2(M=Ni, Fe) Particles by Triethylene Glycol Solution Process [J]. Cryst Eng Comm, 2014, 16(30): 6819-6822. doi: 10.1039/C4CE00771A [19] YU X, SUN W D, CHU Y. One-Pot Solvothermal Synthesis and Properties of 1D NiSe and NiSe-Ni3S2 Alloyed Compound Nanorod Arrays [J]. New J Chem, 2014, 38(1): 70-76. doi: 10.1039/C3NJ00815K [20] ZHANG W B, CHEN S G, ZENG K. Tuning the Crystal Shape of Materials by Chemical Potential: a Combined Theoretical and Experimental Study for NiSe2 [J]. RSC Adv, 2014, 4(26): 13395-13404. doi: 10.1039/C3RA47564F [21] WANG X, ZUANG J, PENG Q, et al. A General Strategy for Nanocrystal Synthesis [J]. Nature, 2005, 437(7055): 121-124. doi: 10.1038/nature03968 [22] ZHANG G Q, WANG W, YU Q X, et al. Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres: Kirkendall-Effect-Induced Growth and Related Properties [J]. Chem Mater, 2009, 21(5): 969-974. doi: 10.1021/cm803307f [23] 潘陈玉洁, 郭秋萍, 王黎阳, 等.氢氧化镍纳米片的制备及其超级电容性能[J].西南师范大学学报(自然科学版), 2015, 40(1): 34-38. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201501007.htm