-
Ⅱ-Ⅵ族半导体材料ZnS是一种直接带隙半导体材料,不仅因为其出色的物理特性,如能带带隙宽,高折射率,在可见光范围内高透光率,而且其在应用光学、光电子器件等方面的巨大潜力,已经引起了极大关注[1-2].并且ZnS是目前被广泛研究的一种光催化材料,它能在光激发下迅速产生电子-空穴对,并在紫外光照射下具有很高的催化分解有机污染物的活性[3].常见的纳米材料合成方法如湿化学法、气相沉积法等都能用来合成ZnS纳米材料[4].然而这些方法要么合成过程复杂,要么产率低、成本高,不适于ZnS纳米材料大规模合成.
溶胶凝胶自燃烧法是一种将传统溶胶凝胶法和自燃烧法相结合的新型材料合成方法[5].此方法以前驱物中的络合剂为燃料,金属硝酸盐的硝酸根为氧化剂,对干凝胶适当加热后引发自燃烧,在燃烧中形成产物.此方法具有反应时间短、操作步骤简便、原材料廉价、产率高等特点,非常适合纳米粉体材料的大规模合成.目前已广泛应用于多种氧化物纳米材料的合成[6].因此研究利用溶胶凝胶自燃烧法合成ZnS纳米颗粒,有可能提供一种简便高效的硫化物纳米材料合成工艺,具有较强的应用和学术价值.
以溶胶凝胶法为基础的ZnS纳米材料合成研究在20年来已有零星报道[7],但是均存在一些缺陷,如:原材料昂贵、操作过程繁杂且产物不稳定等.最近JIANG Y W等[8]利用溶胶凝胶自燃烧法,通过在胶体中引入过量硫脲作为络合剂,在燃烧过程中同时实现nZn/nCd纳米颗粒的还原与硫化,合成了ZnS,CdS和ZnxCd1-xS纳米颗粒.但是重复这一实验发现合成的纳米颗粒粒径均一性很差(图 1).由于ZnS和CdS等半导体纳米材料在光、电、磁和光催化等方面的应用与其晶体结构和颗粒粒径紧密相关,无法得到颗粒粒径均一性较好的纳米颗粒限制了此方法的应用范围.
在JIANG Y W等的研究基础上,通过在前驱物中引入乙二醇和氨基乙酸作为硫脲以外的络合剂,成功利用溶胶凝胶自燃烧法合成了颗粒粒径均一性较好的多晶ZnS纳米颗粒,并且进一步详细研究了前驱物中n(乙二醇)/n(氨基乙酸)、n(氧化剂)/n(燃料)和锌、硫原子摩尔比对样品纳米颗粒粒径分布的影响.研究发现可以通过n(乙二醇)/n(氨基乙酸)来独立优化纳米颗粒粒径的均一性.由于在燃烧法合成中n(氧化剂)/n(燃料)对产物晶体结构、晶化程度和表面性质等多方面都有显著影响[9],而前驱物中锌、硫原子摩尔比会直接影响最终产物中的锌、硫原子摩尔比,会对硫化物光电性能带来影响[10].实现利用n(乙二醇)/n(氨基乙酸)来独立优化纳米颗粒粒径的均一性,有利于基于此合成方法的功能材料设计和性能优化研究.
Size Distribution Control of ZnS Nanoparticles Synthesized with the Sol-Gel Auto-combustion Method
-
摘要: 以硝酸锌、硫脲、乙二醇以及氨基乙酸等为原料,运用溶胶凝胶自燃烧法合成了尺寸和形貌均一性较好的ZnS多晶纳米颗粒.经X射线衍射仪、扫描电子显微镜、紫外-可见分光光度计等表征发现合成的ZnS纳米颗粒具有闪锌矿结构,其平均粒径为160 nm且每个纳米颗粒均由约10 nm的晶粒组成,且样品具有良好的光吸收性能,其能带带隙为3.46 eV.还详细研究了前驱物中组分比例对ZnS纳米颗粒粒径分布的具体影响.研究表明前驱物中n(乙二醇)/n(氨基乙酸)是影响ZnS纳米颗粒粒径分布的主要因素.这一研究结果提供了一种基于自燃烧法的可靠的ZnS纳米颗粒合成工艺,并且实现了利用n(乙二醇)/n(氨基乙酸)独立优化纳米颗粒粒径均一性,有利于基于此工艺的功能材料设计和光电性能优化.Abstract: Porous ZnS nanoparticles with narrow size distribution and regular shape were synthesized with the sol-gel auto-combustion method, using zinc nitrate, thiourea, ethylene glycol and glycine as the precursors. The structure, morphology and optical properties of the products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet-visible spectroscopy (UV-Vis). The synthesized ZnS nanoparticles manifested a sphalerite structure and a band gap of 3.46 eV. The average diameter of the nanoparticles was 160 nm, and each nanoparticle consisted of crystallites about 10 nm in size. Further, we studied the influence of the component ratio in the precursors on particle size distribution of ZnS nanoparticles, and found that ethylene glycol/glycine ratio in the precursors was the main factor affecting the particle size distribution of ZnS nanoparticles. In this work, a reliable synthesis routine for ZnS nanoparticles was proposed, and narrow size distribution was achieved with adjustment of ethylene glycol/glycine ratio in the precursors, which is expected to be beneficial to the performance optimization of functional materials synthesized with the sol-gel autocombustion method.
-
Key words:
- sol-gel autocombustion /
- zinc sulfide nanoparticle /
- semiconductor /
- size distribution .
-
表 1 nZn/nS=1/1.5、1/2时不同nZn/nC下最佳n(乙二醇)/n(氨基乙酸)及对应样品颗粒粒径平均值与方差
nZn/nS nZn/nC n(乙二醇)/n(氨基乙酸) 平均值/nm 方差 1/1.5 1/3 3.2/1 190 0.003 8 1/3.5 2.8/1 160 0.003 8 1/4 2.2/1 200 0.003 3 1/2 1/3 3.4/1 180 0.003 2 1/3.5 2.8/1 170 0.003 4 1/4 2.4/1 190 0.003 3 -
[1] DONG X L, ZHANG Z D, JIN S R, et al. Characterization of Fe-Ni (C) Nanocapsules Synthesized by Arc Discharge in Methane[J]. J Mater Res, 1999, 14(5):1782-1790. doi: 10.1557/JMR.1999.0240 [2] ZHANG Z D, ZHENG J G, SKORVANEK I, et al. Shell/Core Structure and Magnetic Properties of Carbon-Coated Fe-Co (C) Nanocapsules[J]. J Phys-Condens Mat, 2001, 13(9):1921-1929. doi: 10.1088/0953-8984/13/9/314 [3] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f357a4c602c89b21ef0b374bf162d526 KAUR M, NAGARAIA C M. Template-Free Synthesis of ZnS Nanocrystals with a New Sulfur and Their Photocatalytic Study[J]. Mater lett, 2015(154):90-93. [4] doi: http://europepmc.org/abstract/MED/23765321 CHEN F J, CAO Y L, JIA D Z, et al. A Facile Route for the Syn-Thesis of ZnS Rods with Excenllent Photocatalytic Acitivity[J]. Chem Eng J, 2013, 234(11):223-231. [5] 蒋毓文.溶胶凝胶自燃烧法合成几种纳米材料[D].南京: 南京大学, 2012. [6] SCHÄFER J, SIGUMUND W, ROY S, et al. Low Temperature Synthesis of Ultrafine Pb (Zr, Ti) O3 Powder by Sol-Gel Combustion[J]. J Mater Res, 1997, 12(10):2518-2521. doi: 10.1557/JMR.1997.0333 [7] WAHAB R, ANSARI S G, KIM Y S, et al. Effect of Annealing on the Conversion of ZnS to ZnO Nanoparticles Synthesized by the Sol-Gel Method Using Zinc Acetate and Thiourea[J]. Met Mater Int 2009, 15(3):453-458. doi: 10.1007/s12540-009-0453-5 [8] JIANG Y W, GONG J F, YANG S H, et al. ZnxCd1-xS Nanocrystals Synthesized by Sol-Gel Autocombustion Method[J]. Mater Res Inno-Vations, 2012, 16(4):257-260. doi: 10.1179/1433075X11Y.0000000063 [9] DESHPANDE K, MUKASYAN A, VARMA A, et al. Direct Synthesis of Iron Oxide Nanopowders by the Combustion Approach:Reaction Mechanism and Properties[J]. Chem Mater, 2004, 16(24):4896-4904. doi: 10.1021/cm040061m [10] doi: http://www.ncbi.nlm.nih.gov/pubmed/25712901 WANG G, HUANG B B, LI Z J, et al. Synthesis and Characterization of ZnS with Controlled Amount of S Vacancies for Photocatalytic H2 Production Under Visible Light[J]. Sci Rep, 2015(5):8544-1-8544-7. [11] 苏正华.溶胶-凝胶法制备铜锌锡硫(Cu2ZnSnS4)薄膜太阳能电池[D].长沙: 中南大学, 2013. [12] WANG L N, ZHANG Y Y, LI X Y, et al. Nanostructured Porous ZnO Film with Enhanced Photocatalytic Activity[J]. Thin Solid Films, 2011, 519(16):5673-5678. doi: 10.1016/j.tsf.2011.02.070 [13] doi: http://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm14448d WANG D J, XUE G L, ZHEN Y Z, et al. Monodispersed Ag Nanoparticles Loaded on the Surface of Spherical Bi2WO6 Nano-Architectures with Enhanced Photocatalytic Activities[J]. J Mater Chem, 2012, 22(11):4571-4758. [14] WU K H, TING T H, LI M C, et al. Sol-Gel Auto-Combustion Synthesis of SiO2-Doped NiZn Ferrite by Using Various Fuels[J]. J Magn Magn Mater, 2006, 298(1):25-32. doi: 10.1016/j.jmmm.2005.03.008 [15] QIN B, GUO Y P, PAN D, et al. Size-Controlled Synthesis of BiFeO3 Nanoparticles by a Facile and Stale Sol-Gel Method[J]. J Mater Sci:Mater Electron, 2016, 27(10):10803-10809. doi: 10.1007/s10854-016-5186-x