-
土壤的自然成土过程是一个缓慢的酸化过程[1].受土壤发育程度的影响,酸性土壤主要分布在热带和亚热带地区.近年来人类活动所导致的气候和土地利用方式变化大大加速了土壤酸化的进程[2-3].严重的土壤酸化引发一系列的生态环境和农业生产问题[4].酸沉降[5-6]和氮肥过量施用是人类活动加速土壤酸化的主要原因[7-8].土壤酸化导致盐基养分离子损失,重金属离子被活化和对植物产生铝毒害等系列问题[9-13].土壤中氢离子和铝离子数量增加的过程即是土壤酸化的过程.土壤的交换性酸含量是评价土壤酸化程度的主要指标[11].其测定原理是用含某种阳离子的盐溶液作为交换剂将土壤胶体上所吸附的H+和Al3+交换下来进行测量.常用的交换剂有非pH值缓冲体系盐溶液(KCl,NaCl,BaCl2,MgCl2等)和具有一定pH值缓冲能力的盐溶液(NaAc,KAc,CuAc2等)[14].也可将中性盐和有机弱碱配合使用作为提取剂,如BaCl2-三乙醇胺(TEA)[15].目前国内外应用最广泛的是采用KCl淋溶法测定土壤交换性酸含量[16-17].由于K+的交换能力较弱,KCl淋溶法测得的土壤交换性酸含量较低.杨剑虹等[15]建议采用KCl淋溶法测量交换性酸应乘以校正系数1.3~1.7,但已发表的研究论文中大多并未进行校正.
有研究者采用BaCl2-TEA作为交换剂来测量土壤交换性酸含量[18].该方法是利用Ba2+的强交换能力将土壤吸附的H+,Al3+交换出来,而交换出来的H+,Al3+被有机碱TEA及时中和,使交换反应快速而完全. BaCl2-TEA交换法无需连续淋洗和多次交换,只需一次平衡交换即可,操作更为简洁.但该方法的测定原理是基于测定加入的和剩余的TEA含量之差来计算出土壤交换性酸含量,即所消耗的TEA含量必须全部用于与H+和Al3+水解产生的H+反应.但在实际情况下,土壤中的组成成分也会与有机碱TEA发生中和反应,从而消耗TEA,造成土壤交换性酸测定结果偏高,但较少发现相关的研究报道.本研究拟探讨BaCl2-TEA提取法和KCl淋溶法在不同有机质质量分数酸性土壤上的交换性酸测定结果,最终揭示土壤有机质质量分数对交换性酸测定结果的影响.
Influence of Soil Organic Matter on the Measurement of Soil Exchangeable Acidity
-
摘要: 为探讨土壤有机质对两种常用的土壤交换性酸测定方法(BaCl2-TEA提取法和KCl淋溶法)结果的影响,选取了85个不同有机质质量分数的酸性土壤并采用BaCl2-TEA提取法和KCl淋溶法测定其交换性酸含量.结果表明,BaCl2-TEA提取法测得的土壤交换性酸含量远大于KCl淋溶法的测定结果.KCl淋溶法测得的土壤交换性酸含量与土壤pH值间的负相关性极有统计学意义(r=-0.79**),而BaCl2-TEA提取法测得的土壤交换性酸含量与土壤pH值间的相关性无统计学意义(r=-0.08).但BaCl2-TEA提取法测得的土壤交换性酸含量却与土壤有机质质量分数间的正相关性极有统计学意义(r=0.94**).此外,由KCl淋溶法测得的土壤交换性酸进一步计算得到的盐基饱和度与土壤pH值间的相关性(r=0.69**)也大于BaCl2-TEA提取法(r=0.25*).通常土壤酸化越严重,土壤pH值越低,交换性酸含量越高,盐基饱和度越低.可以得出,土壤有机质会使BaCl2-TEA提取法的测定结果产生较大的正误差,而对KCl淋溶法的影响较小.由于土壤有机质中的腐殖酸会与BaCl2-TEA提取法中的有机弱碱TEA发生反应,增加TEA用量,从而使计算得到的土壤交换性酸的结果偏高.因此,对于高有机质质量分数的酸性土壤,不宜采用BaCl2-TEA提取法测定其交换性酸含量.但在KCl淋溶法中,由于K+对Al3+的交换能力较弱,使得该方法测得的土壤交换性酸含量偏低.因此,可乘以1.5左右的校正系数,以便能真实地反映出土壤交换性酸含量.
-
关键词:
- 交换性酸测定 /
- BaCl2-TEA提取法 /
- KCl淋溶法 /
- 土壤有机质
Abstract: In order to investigate the effects of soil organic matter on the measurements of soil exchangeable acidities with different extraction methods, the exchangeable acidities of 85 acidic soils with different contents of organic matter were measured by the BaCl2-TEA (Triethanolamine) extraction method and the KCl leaching method. The results showed that the contents of soil exchangeable acidity measured by BaCl2-TEA extraction were much higher than those measured by the KCl leaching method. The correlation between soil pH and soil exchangeable acidities measured by the KCl leaching method (r=0.79**, p < 0.01) was better than that measured by the BaCl2-TEA extraction method (r=0.08). However, there was a highly significant positive correlation between soil organic matter and soil exchangeable acidities obtained by the BaCl2-TEA extraction method (r=0.94**, p < 0.01). In addition, the correlation between soil pH and base saturation calculated with the KCl leaching method (r=0.69**) was higher than that calculated with the BaCl2-TEA extraction method (r=0.25*). Generally, when the soil is acidified, the content of soil exchangeable acidity will increase and the base saturation will decrease. The humic acids in soil organic matter can react with TEA and increase the usage of TEA, thus inducing higher content of soil exchangeable acidities. Therefore, the BaCl2-TEA extraction method is not suitable for the measurement of exchangeable acidity in acidic soil with high content of organic matter. In addition, the soil exchangeable acidity measured by the KCl leaching method was low because of the weakly exchangeable ability of K+. Therefore, it is advisable to adjust the content of soil exchangeable acidity measured by the KCl leaching method with a coefficient of 1.5. -
表 1 土壤养分指标统计表(n=85)
pH值 有机质/(g·kg-1) 碱解氮 有效磷 速效钾 全氮 全磷 全钾 /(mg·kg-1) /(g·kg-1) 均值 4.8 55.3 301 56.5 268 3.28 1.29 19.2 极小值 4.1 16.3 100 5.4 50 0.32 0.16 15.0 极大值 5.5 73.9 477 101.0 545 4.47 2.43 25.3 标准差 0.3 16.3 82 23.9 112 0.92 0.52 1.57 变异系数 0.054 0.294 0.273 0.423 0.420 0.280 0.404 0.082 表 2 土壤阳离子交换性能指标统计表
cmol(+)/kg 交换性酸 交换性盐基离子 ECEC 盐基饱和度 BaCl2-TEA提取 KCl淋溶 K+ Na+ Ca2+ Mg2+ BaCl2-TEA提取 KCl淋溶 BaCl2-TEA提取 KCl淋溶 均值 27.70 3.26 0.76 0.14 4.44 1.52 34.60 8.54 21.3% 75.8% 极小值 8.75 0.40 0.21 0.02 0.95 0.70 19.9 4.60 6.6% 45.0% 极大值 34.30 5.65 1.45 0.52 12.50 4.44 42.50 19.00 63.1% 98.1% 标准差 7.35 1.22 0.28 0.12 3.19 0.96 4.84 3.66 15.7% 13.6% 变异系数 0.265 0.376 0.375 0.878 0.718 0.632 0.140 0.429 0.741 0.180 -
[1] SLESSAREV E W, LIN Y, BINGHAM N L, et al. Water Balance Creates a Threshold in Soil pH at the Global Scale[J]. Nature, 2016, 540:567-569. doi: 10.1038/nature20139 [2] ZHU Q C, VRIES W D, LIU X J, et al. The Contribution of Atmospheric Deposition and Forest Harvesting to Forest Soil Acidification in China Since 1980[J]. Atmospheric Environment, 2016, 146:215-222. doi: 10.1016/j.atmosenv.2016.04.023 [3] YANG Y H, JI C J, MA W H, et al. Significant Soil Acidification Across Northern China's Grasslands During 1980s-2000s[J]. Global Change Biology, 2012, 18:2292-2300. doi: 10.1111/j.1365-2486.2012.02694.x [4] 徐仁扣.土壤酸化及其调控研究进展[J].土壤, 2015, 47(2):238-244. doi: http://www.cnki.com.cn/Article/CJFDTotal-TURA201502007.htm [5] BREEMEN N V, BURROUGH P A, VELTHORST E J, et al. Soil Acidification from Atmospheric Ammonium Sulphate in Forest Canopy Throughfall[J]. Nature, 1982, 299:548-550. doi: 10.1038/299548a0 [6] 熊仕娟, 苏静, 闫小娟, 等.施用硫酸铵对酸性紫色土硝化作用的影响[J].西南大学学报(自然科学版), 2015, 37(11):131-136. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201511019 [7] GUO J H, LIU X J, ZHANG Y, et al. Significant Acidification in Major Chinese Croplands[J]. Science, 2010, 327(5968):1008-1010. doi: 10.1126/science.1182570 [8] LU X K, MAO Q G, GILLIAM F S, et al. Nitrogen Deposition Contributes to Soil Acidification in Tropical Ecosystems[J]. Global Change Biology, 2014, 20:3790-3801. doi: 10.1111/gcb.12665 [9] 梁骏, 郑有飞, 李璐, 等.酸雨对土壤酸化和油菜中后期生长发育的影响[J].农业环境科学学报, 2008, 27(3):1043-1050. doi: 10.3321/j.issn:1672-2043.2008.03.037 [10] 王秀青, 李永梅, 谢瑾, 等.古茶园和现代茶园土壤养分于微生物数量研究[J].西南大学学报(自然科学版), 2015, 37(10):43-50. doi: http://www.cqvip.com/QK/95549A/201510/666574073.html [11] BAQUY M A, LI J Y, XU C Y, et al. Determination of Critical pH and Al Concentration of Acidic Ultisols for Wheat and Canola Crops[J]. Solid Earth, 2017, 8:149-159. doi: 10.5194/se-8-149-2017 [12] LOFTON J, GODSEY C B, ZHANG H. Determining Aluminum Tolerance and Critical Soil pH for Winter Canola Production for Acidic Soils in Temperate Regions[J]. Agronomy Journal, 2010, 102(1):327-332. doi: 10.2134/agronj2009.0252 [13] 赵凯丽, 蔡泽江, 王伯仁, 等.不同母质和植被类型下红壤pH值和交换性酸的剖面特征[J].中国农业科学, 2015, 48(23):4818-4826. doi: 10.3864/j.issn.0578-1752.2015.23.023 [14] PANSU M, GAUTHEYROU J. Handbook of Soil Analysis-Mineralogical, Organic and Inorganic Methods[M]. New York:Springer, 2003:678-680. [15] 杨剑虹, 王成秋, 代亨林.土壤农化分析与环境监测[M].北京:中国大地出版社, 2008. [16] 汪文强, 王子芳, 高明, 等.施氮对紫色土交换性酸及盐基饱和度的影响[J].水土保持学报, 2014, 28(3):138-142. doi: http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201403026 [17] MASUD M M, GUO D, LI J, et al. Hydroxyl Release by Maize (Zea mays L.) Roots Under Acidic Conditions Due to Nitrate Absorption and Its Potential to Ameliorate an Acidic Ultisol[J]. Journal of Soils and Sediments, 2014, 14(5):845-853. doi: 10.1007/s11368-013-0837-5 [18] 李忠意, 程永毅, 杨剑虹.重庆地区中性紫色土酸化特征[J].水土保持学报, 2012, 26(6):234-237. doi: http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206046 [19] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [20] 陈怀满.环境土壤学[M]. 2版.北京:科学出版社, 2010. [21] GOULDING K W T. Soil Acidification and the Importance of Liming Agricultural Soils with Particular Reference to the United Kingdom[J]. Soil Use and Management, 2016, 32:390-399. doi: 10.1111/sum.2016.32.issue-3 [22] 黄昌勇.土壤学[M].北京:中国农业科技出版社, 2000.