-
研究如下
$ {\mathbb{R}}^3 $ 中的Bénard系统:其中:u=u(x,t),ω=ω(x,t),p=p(x,t)分别表示不可压缩的粘性流体的速率、温度、压力;
$ \xi \in {{\mathbb{R}}^3} $ 为常向量且满足|ξ|≤1;$u\nabla = \sum\limits_{i = 1}^3 {{u_i}\frac{\partial }{{\partial {x_i}}}} $ ;且对N≥1,${F_N}(r) = \min \{ 1, \frac{N}{r}\} $ .Bénard系统是描述不可压缩流体的动力模型方程,至今已有大量工作致力于该系统的研究.在Bénard系统解的研究中,文献[1-6]研究了Bénard系统解的存在性,文献[7-8]讨论了解的正则性,文献[9]证明了解在时间趋于无穷大的爆破,并给出了强解的精确估计,从而得到了解在大时间情况下的增长和衰减.
本文的主要目的是借助于文献[10]的方法,研究3维Bénard系统(1)-(2)弱解的长时间渐近性.
先作一些基本的假设.
$ {L^p}({{\mathbb{R}}^3}) $ 定义为Lq(0,T;X)定义为所有可测函数
$u:(0, T) \mapsto X$ 组成的空间,且范数为:为简化表述,我们用‖·‖表示
$ {({L^2}({{\mathbb{R}}^3}))^d} $ 的范数.令又令
下面给出本文中3维Bénard系统(1)-(2)的弱解的定义:
定义1 设
$ {u_0} \in {({L^2}({{\mathbb{R}}^3}))^3}, {\omega _0} \in {L^2}({{\mathbb{R}}^3}) $ .向量场{u(x,t),ω(x,t)}被称为3维Bénard系统(1)-(2)的弱解,如果{u,ω}满足下列条件:(ⅰ)
$u \in {L^\infty }(0, T;{({L^2}({{\mathbb{R}}^3}))^3}) \cap {L^2}(0, T;{({H^1}({{\mathbb{R}}^3}))^3})$ ,$\omega \in {L^\infty }(0, T;{L^2}({{\mathbb{R}}^3})) \cap {L^2}(0, T;{H^1}({{\mathbb{R}}^3}))$ ;(ⅱ)对任意
$\phi \in {(C_0^\infty ({{\mathbb{R}}^3} \times [0, T)))^3}, \varphi \in C_0^\infty ({{\mathbb{R}}^3} \times [0, T))$ 满足$\nabla \cdot \phi = 0, \nabla \cdot \varphi = 0$ ,有(ⅲ)能量不等式:
本文的主要结果如下:
定理1 假设{u(x,t),ω(x,t)}是3维Bénard系统(1)-(2)的弱解.则{u,ω}在H1中有如下衰减估计:
证 令(1)式与-Δu作内积可得:
令(2)式与-Δω作内积可得:
由(3)-(4)式可得:
又由Gagliardo-Nirenberg不等式可知:
因此,由Hölder不等式和Young不等式可得:
因此可得:
整理可得:
下面用反证法证明:对∀ε>0,存在M>0,使得对t≥M,有‖u‖‖▽u‖≤ε.
假设存在正常数ε0,使得对所有t≥0,有:
则由能量不等式可得:
即
又由能量不等式可知:
与(6)式矛盾.因此有:
代入(5)式,由|ξ|≤1可得:
联合能量不等式可得:
因此可得:
Large Time Asymptotic Behavior for Weak Solutions of 3D Bénard System
-
Abstract: In this paper, we study the large time asymptotic behavior of weak solutions in the three dimensional Bénard system and give the decay estimate of the weak solution in using the energy method.
-
Key words:
- Bénard system /
- decay estimate /
- energy inequality .
-
[1] doi: http://mathscinet.ams.org/mathscinet-getitem?mr=2026183 BIRNIR B, SVANSTEDT N. Existence Theory and Strong Attractors for the Rayleigh-Bénard Problem with a Large Aspect Ratio[J]. Discrete and Continuous Dynamical Systems-Series A, 2012, 10(1-2):53-74. [2] KAPUSTYAN A V, PANKOV A V, VALERO J. On Global Attractors of Multivalued Semiflows Generated by the 3D BénardSystem[J]. Set-Valued and Variational Analysis, 2012, 20(4):667-667. doi: 10.1007/s11228-012-0205-4 [3] ÇELEBI A O. Global Attractor for the Regularized BénardProblem[J]. Applicable Analysis, 2014, 93(9):1989-2001. [4] KAPUSTYAN O V, PANKOV A V. Global φ-Attractor for a Modified 3D Bénard System on Channel-Like Domains[J]. Nonautonomous Dynamical Systems, 2014, 1(1):1-9. [5] ANH C T, SON D T. Pullback Attractors for Nonautonomous 2D Bénard Problem in Some Unbounded Domains[J]. Mathematical Methods in the Applied Sciences, 2013, 36(13):1664-1684. doi: 10.1002/mma.v36.13 [6] doi: http://mathscinet.ams.org/mathscinet-getitem?mr=2026185 TEMAM R, ROSA R, CABRAL M. Existence and Dimension of the Attractor for the Bénard Problem on Channel-Like Domains[J]. Discrete and Continuous Dynamical Systems-Series A, 2012, 10(1-2):89-116. [7] CHENG F, XU C J. Analytical Smoothing Effect of Solution for the Boussinesq Equations[EB/OL]. (2017-02-22)[2017-10-25]. https://arxiv.org/pdf/1702.06737.pdf. [8] doi: http://mathscinet.ams.org/mathscinet-getitem?mr=2291907 KAPUSTYAN O V, MELNIK V S, VALERO J. A Weak Attractor and Properties of Solutions for the Three-Dimensional Bénard Problem[J]. Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 2012, 18(2-3):449-481. [9] BRANDOLESE L, SCHONBEK M. Large Time Decay and Growth for Solutions of a Viscous Boussinesq System[J]. Transactions of the American Mathematical Society, 2012, 364(10):5057-5090. doi: 10.1090/tran/2012-364-10 [10] doi: http://59.80.44.47/downloads.hindawi.com/journals/aaa/2014/879780.pdf REN J. Large Time Behavior for Weak Solutions of the 3D Globally Modified Navier-Stokes Equations[J]. Abstract and Applied Analysis, 2014, 2014(4):1-5.
计量
- 文章访问数: 669
- HTML全文浏览数: 314
- PDF下载数: 15
- 施引文献: 0