BIRNIR B, SVANSTEDT N. Existence Theory and Strong Attractors for the Rayleigh-Bénard Problem with a Large Aspect Ratio[J]. Discrete and Continuous Dynamical Systems-Series A, 2012, 10(1-2):53-74.
|
KAPUSTYAN A V, PANKOV A V, VALERO J. On Global Attractors of Multivalued Semiflows Generated by the 3D BénardSystem[J]. Set-Valued and Variational Analysis, 2012, 20(4):667-667. doi: 10.1007/s11228-012-0205-4
|
ÇELEBI A O. Global Attractor for the Regularized BénardProblem[J]. Applicable Analysis, 2014, 93(9):1989-2001.
|
KAPUSTYAN O V, PANKOV A V. Global φ-Attractor for a Modified 3D Bénard System on Channel-Like Domains[J]. Nonautonomous Dynamical Systems, 2014, 1(1):1-9.
|
ANH C T, SON D T. Pullback Attractors for Nonautonomous 2D Bénard Problem in Some Unbounded Domains[J]. Mathematical Methods in the Applied Sciences, 2013, 36(13):1664-1684. doi: 10.1002/mma.v36.13
|
TEMAM R, ROSA R, CABRAL M. Existence and Dimension of the Attractor for the Bénard Problem on Channel-Like Domains[J]. Discrete and Continuous Dynamical Systems-Series A, 2012, 10(1-2):89-116.
|
CHENG F, XU C J. Analytical Smoothing Effect of Solution for the Boussinesq Equations[EB/OL]. (2017-02-22)[2017-10-25]. https://arxiv.org/pdf/1702.06737.pdf.
|
KAPUSTYAN O V, MELNIK V S, VALERO J. A Weak Attractor and Properties of Solutions for the Three-Dimensional Bénard Problem[J]. Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 2012, 18(2-3):449-481.
|
BRANDOLESE L, SCHONBEK M. Large Time Decay and Growth for Solutions of a Viscous Boussinesq System[J]. Transactions of the American Mathematical Society, 2012, 364(10):5057-5090. doi: 10.1090/tran/2012-364-10
|
REN J. Large Time Behavior for Weak Solutions of the 3D Globally Modified Navier-Stokes Equations[J]. Abstract and Applied Analysis, 2014, 2014(4):1-5.
|