一类递推方程的周期性和渐近性
Periodicity and Asymptotic Behavior of a Kind of Recursive Sequence Equations
-
摘要: 本文考虑差分方程xn+1=α+βxpn-k/xpn-l解的周期性、渐近性质和渐近稳定性.其中α≥0,β>0,p≠0,k,l是非负整数,μ=max{k,l},及初值x-μ,x1-μ,…,x0是任意正实数.
-
关键词:
- 差分方程,周期性,渐近性质,渐近稳定性
Abstract: In this paper, we investigate the periodicity, asymptotic behavior and asymptotic stability of the solutions for difference equation xn+1=α+β xpn-k/xpn-l n=0,1,…where α≥0, β>0, p≠0, k and l are nonnegative integers, μ=max{k, l}, and the initial values x-μ, x1-μ, …, x0 are arbitrary positive real numbers. -
-
计量
- 文章访问数: 247
- HTML全文浏览数: 82
- PDF下载数: 0
- 施引文献: 0