EKSTRAND M D. Collaborative Filtering Recommender Systems[J]. Foundations and Trends © in Human-Computer Interaction, 2011, 4(2): 81-173. doi: 10.1561/1100000009
|
ZHANG S C, LI X L, ZONG M, et al. Efficient kNN Classification with Different Numbers of Nearest Neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1774-1785. doi: 10.1109/TNNLS.2017.2673241
|
ZHANG S, LIU L X, CHEN Z L, et al. Probabilistic Matrix Factorization with Personalized Differential Privacy[J]. Knowledge-Based Systems, 2019, 183: 104864. doi: 10.1016/j.knosys.2019.07.035
|
WEI J, HE J H, CHEN K, et al. Collaborative Filtering and Deep Learning Based Recommendation System for Cold Start Items[J]. Expert Systems With Applications, 2017, 69: 29-39. doi: 10.1016/j.eswa.2016.09.040
|
STRANG G. The Discrete Cosine Transform[J]. SIAM Review, 1999, 41(1): 135-147. doi: 10.1137/S0036144598336745
|
HU J Y, GAO Z W, PAN W S. Multiangle Social Network Recommendation Algorithms and Similarity Network Evaluation[J]. Journal of Applied Mathematics, 2013, 2013: 248084.
|
RICCI F, ROKACH L, SHAPIRA B. Introduction to Recommender Systems Handbook[M]. Springer: Recommender Systems Handbook, 2011: 1-35.
|
LI R Z, ZHONG W, ZHU L P. Feature Screening via Distance Correlation Learning[J]. Journal of the American Statistical Association, 2012, 107(499): 1129-1139. doi: 10.1080/01621459.2012.695654
|
ZHANG H R, MIN F, ZHANG Z H, et al. Efficient Collaborative Filtering Recommendations with Multi-Channel Feature Vectors[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(5): 1165-1172. doi: 10.1007/s13042-018-0795-8
|
ZHANG H R, MIN F, SHI B. Regression-Based Three-Way Recommendation[J]. Information Sciences, 2017, 378: 444-461. doi: 10.1016/j.ins.2016.03.019
|
QIAN G, SURAL S, GU Y L, et al. Similarity Between Euclidean and Cosine Angle Distance for Nearest Neighbor Queries[C] // Proceedings of the 2004 ACM Symposium on Applied Computing. New York: ACM Press, 2004: 1232-1237.
|
PATRA B K, LAUNONEN R, OLLIKAINEN V, et al. A New Similarity Measure Using Bhattacharyya Coefficient for Collaborative Filtering in Sparse Data[J]. Knowledge-Based Systems, 2015, 82: 163-177. doi: 10.1016/j.knosys.2015.03.001
|
CHANG D J, DESOKY A H, MING O Y, et al. Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of Data Points with GPU[C] //2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing. Daegu, Korea (South): IEEE, 2009: 501-506.
|
JIA X Y, LI W W, LIU J Y, et al. Label Distribution Learning by Exploiting Label Correlations[C] // Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo park, CA, AAAI, 2018: 3310-3317.
|
GENG X, HOU P. Pre-Release Prediction of Crowd Opinion on Movies by Label Distribution Learning[C] //IJCAI'15: Proceedings of the 24th International Conference on Artificial Intelligence, 2015: 3511-3517.
|
CHA S H. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2007, 1(4): 300-307.
|
DEZA E, DEZA M M. Distances in Geometry[M] //Dictionary of Distances. Amsterdam: Elsevier, 2006: 62-80.
|
COX T, COX M. Multidimensional Scaling[M]. Chapman and Hall/CRC, 2000.
|
WANG J, DE VRIES A P, REINDERS M J T. Unified Relevance Models for Rating Prediction in Collaborative Filtering[J]. ACM Transactions on Information Systems, 2008, 26(3): 1-42.
|
SARWAR B, KARYPIS G, KONSTAN J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the Tenth International Conference on World Wide Web. New York: ACM Press, 2001: 285-295.
|
WILLMOTT C J, MATSUURA K. Advantages of the Mean Absolute Error (MAE)over the Root Mean Square Error (RMSE) in Assessing Average Model Performance[J]. Climate Research, 2005, 30: 79-82. doi: 10.3354/cr030079
|
BERGER A, GUDA S. Threshold Optimization for F Measure of Macro-Averaged Precision and Recall[J]. Pattern Recognition, 2020, 102: 107250. doi: 10.1016/j.patcog.2020.107250
|