BAOUENDI M S. Sur Une Classe D'opérateurs Elliptiques DÉGÉNÉRÉS[J]. Bulletin De La Société Mathématique De France, 1967, 79: 45-87. doi: 10.24033/bsmf.1647
JERISON D, LEE J M. The Yamabe Problem on CR Manifolds[J]. Journal of Differential Geometry, 1987, 25(2): 167-197.
HÖRMANDER L. Hypoelliptic Second Order Differential Equations[J]. Acta Mathematica, 1967, 119(1): 147-171.
FRANCHI B. Weighted Sobolev-Poincare Inequalities and Pointwise Estimates for a Class of Degenerate Elliptic Equations[J]. Transactions of the American Mathematical Society, 1991, 327(1): 125.
FRANCHI B, LANCONELLI E. Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operator with Measurable Coefficients[J]. Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 1983, 10(4): 523-541.
FRANCHI B, SERAPIONI R. Pointwise Estimates for a Class of Strongly Degenerate Elliptic Operators: a Geometrical Approach[J]. Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 1987, 14(4): 527-568.
WANG L H. Hölder Estimates for Subelliptic Operators[J]. Journal of Functional Analysis, 2003, 199(1): 228-242. doi: 10.1016/S0022-1236(03)00093-4
SONG Q Z, LU Y, SHEN J Z, et al. Regularity Estimates for a Class of Degenerate Elliptic Equations[J]. Annali Scuola Normale Superiore-Classe Di Scienze, 2011(5): 645-667.
MONTI R, MORBIDELLI D. Kelvin Transform for Grushin Operators and Critical Semilinear Equations[J]. Duke Mathematical Journal, 2006, 131(1): 167-202.
钱红丽, 黄小涛. 一类Baouendi-Grushin方程解的对称性[J]. 纺织高校基础科学学报, 2019, 32(3): 307-311.
董艳, 钮鹏程. 由Baouendi-Grushin向量场构成的退化椭圆方程组弱解梯度的Lp估计[J]. 纺织高校基础科学学报, 2011, 24(3): 373-376, 381. doi: 10.3969/j.issn.1006-8341.2011.03.013
KOMBE I, YENER A. General Weighted Hardy Type Inequalities Related to Baouendi-Grushin Operators[J]. Complex Variables and Elliptic Equations, 2018, 63(3): 420-436. doi: 10.1080/17476933.2017.1318128
王胜军, 韩亚洲. Baouendi-Grushin p-退化椭圆算子的广义Picone恒等式及其应用[J]. 西南师范大学学报(自然科学版), 2018, 43(3): 1-6.
DIBENEDETTO E. Hölder Continuity of Solutions of Degenerate Parabolic Equations[M]//Universitext. New York: Springer, 1993: 41-76.
KOMBE I. Nonlinear Degenerate Parabolic Equations for Baouendi-Grushin Operators[J]. Mathematische Nachrichten, 2006, 279(7): 756-773. doi: 10.1002/mana.200310391
HUANG X T, MA F Y, WANG L H. Lq Regularity for P-Laplace Type Baouendi-Grushin Equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 113: 137-146.
TRI N M. Critical Sobolev Exponent for Degenerate Elliptic Operators[J]. Acta Mathematica Vietnamica, 1998, 23(1): 83-94.
SOGGE C D. Hangzhou Lectures on Eigenfunctions of the Laplacian[M]. Princeton: Princeton University Press, 2014.
CAFFARELLI L, CABRÉ X. Fully Nonlinear Elliptic Equations[M]. Providence: American Mathematical Society, 1995.
BYUN S S, WANG L H. Elliptic Equations with BMO Coefficients in Reifenberg Domains[J]. Communications on Pure and Applied Mathematics, 2004, 57(10): 1283-1310. doi: 10.1002/cpa.20037
BYUN S S, WANG L H, ZHOU S L. Nonlinear Elliptic Equations with BMO Coefficients in Reifenberg Domains[J]. Journal of Functional Analysis, 2007, 250(1): 167-196. doi: 10.1016/j.jfa.2007.04.021
陈亚浙. 二阶抛物型偏微分方程[M]. 北京: 北京大学出版社, 2003.