-
令x∈
$\mathbb{R}^n$ ,y∈$\mathbb{R}^m$ ,γ>0,Baouemdi-Grushin(B-G)向量场[1]为B-G梯度可定义为
对应的B-G型拉普拉斯算子为
其中Δx,Δy分别是
$\mathbb{R}^n$ 和$\mathbb{R}^m$ 空间上的拉普拉斯算子.当γ=1时,文献[2]研究了方程
此方程与Cauchy-Riemann Yamabe问题有密切关系.
当γ是正整数时,向量场Xi和Xj满足Hörmander条件[3]. 由此得到方程的Hε正则性估计.
若γ为任意的正数时,向量场Xi和Xj仅为Hölder连续,不满足Hörmander条件,所以不能得到Hε正则性. 文献[4-6]通过研究与B-G向量场相关的加权Sobolev-Poincare不等式,证明了Harnack不等式和方程解的Cα估计.
特别地,当γ=
$\frac{1}{2}$ 时,文献[7]研究了与跨声速流相关的方程并通过构造与B-G向量场相对应的椭圆Carnot-Carathéodory(C-C)度量,给出了方程解的C*2,α正则性估计. 文献[8]建立了方程解梯度的Lp估计. 文献[9]研究了半线性的椭圆Baouendi-Grushin方程,并利用kelvin变换给出方程正解的球对称结果. 文献[10]用约束重排的方法研究了Baouendi-Grushin方程解的存在性和对称性. 文献[11]研究了Baouendi-Grushin向量场下退化椭圆方程组弱解梯度的Lp估计. 其他关于B-G算子的研究可参考文献[12-13].
退化抛物B-G方程也引起了众多学者的关注[3, 14]. 随后,文献[15]研究了抛物p-Laplace类型的B-G方程并证明了一些存在性结论. 文献[16]研究了带有初值问题的分数阶p-Laplace B-G方程,通过引入与B-G向量场相关的内在度量,用紧方法证明了方程解的Lq正则性估计.
对于抛物型B-G方程,假设Ω⊂
$\mathbb{R}^n$ ×$\mathbb{R}^m$ 是一个有界开区域,抛物区域为Ω*=Ω×(0,T],则抛物边界为$\partial {\mathit{\Omega}}_{*}=(\partial {\mathit{\Omega}} \times(0, T]) \cup({\mathit{\Omega}} \times\{t=0\})$ . 我们将研究下述抛物B-G拉普拉斯方程其中f=(l1,…,ln,ln+1,…,ln+m).
本文主要证明的结论如下:
定理1 设u∈Wγ1,2(Ω′*)为方程(3)的弱解,如果f∈Lp(Ω*)(p≥2)且(0,0)为内点,则▽γu∈Lp(Ω′*),其中Ω′*⊂⊂Ω*. 进一步,有估计
在区域{(x,y,t)∈Ω*:x=0}附近,此方程为退化抛物方程;如果远离{x=0}区域,则方程没有退化性. 我们将分别研究在{x=0}附近区域和远离{x=0}的区域的解的正则性,并给出方程解的一致性估计.
Wγ1, p Regularity for Parabolic Baouendi-Grushin Laplace Equations
-
摘要: 拟研究一类退化抛物Baouendi-Grushin Laplace方程. 通过构造与Baouendi-Grushin向量场相对应的抛物Carnot-Carathéodory度量, 利用极大值函数的强p-p估计、Lp函数的几何测度估计以及改进后的Vitali覆盖定理来证明方程解梯度的Lp估计. 本结论推广了二阶抛物方程解的正则性理论.Abstract: In this paper, a class of degenerate parabolic Baouendi-Grushin Laplace equations have been investigated. By introducing the parabolic Carnot-Caratheodory metric which is associated with the geometry of the Baouendi-Grushin vector fields, the strong (p, p) estimates of Maximal functions, the geometry measure theory for Lp functions and modified Vitali covering theorem have been used to prove the Lp regularity estimates for the gradient of solutions of parabolic Baouendi-Grushin Laplace equations. Our result generalizes the gradient estimates for the second order parabolic equations.
-
[1] BAOUENDI M S. Sur Une Classe D'opérateurs Elliptiques DÉGÉNÉRÉS[J]. Bulletin De La Société Mathématique De France, 1967, 79: 45-87. doi: 10.24033/bsmf.1647 [2] JERISON D, LEE J M. The Yamabe Problem on CR Manifolds[J]. Journal of Differential Geometry, 1987, 25(2): 167-197. [3] HÖRMANDER L. Hypoelliptic Second Order Differential Equations[J]. Acta Mathematica, 1967, 119(1): 147-171. [4] FRANCHI B. Weighted Sobolev-Poincare Inequalities and Pointwise Estimates for a Class of Degenerate Elliptic Equations[J]. Transactions of the American Mathematical Society, 1991, 327(1): 125. [5] FRANCHI B, LANCONELLI E. Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operator with Measurable Coefficients[J]. Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 1983, 10(4): 523-541. [6] FRANCHI B, SERAPIONI R. Pointwise Estimates for a Class of Strongly Degenerate Elliptic Operators: a Geometrical Approach[J]. Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 1987, 14(4): 527-568. [7] WANG L H. Hölder Estimates for Subelliptic Operators[J]. Journal of Functional Analysis, 2003, 199(1): 228-242. doi: 10.1016/S0022-1236(03)00093-4 [8] SONG Q Z, LU Y, SHEN J Z, et al. Regularity Estimates for a Class of Degenerate Elliptic Equations[J]. Annali Scuola Normale Superiore-Classe Di Scienze, 2011(5): 645-667. [9] MONTI R, MORBIDELLI D. Kelvin Transform for Grushin Operators and Critical Semilinear Equations[J]. Duke Mathematical Journal, 2006, 131(1): 167-202. [10] 钱红丽, 黄小涛. 一类Baouendi-Grushin方程解的对称性[J]. 纺织高校基础科学学报, 2019, 32(3): 307-311. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-FGJK201903014.htm [11] 董艳, 钮鹏程. 由Baouendi-Grushin向量场构成的退化椭圆方程组弱解梯度的Lp估计[J]. 纺织高校基础科学学报, 2011, 24(3): 373-376, 381. doi: 10.3969/j.issn.1006-8341.2011.03.013 [12] KOMBE I, YENER A. General Weighted Hardy Type Inequalities Related to Baouendi-Grushin Operators[J]. Complex Variables and Elliptic Equations, 2018, 63(3): 420-436. doi: 10.1080/17476933.2017.1318128 [13] 王胜军, 韩亚洲. Baouendi-Grushin p-退化椭圆算子的广义Picone恒等式及其应用[J]. 西南师范大学学报(自然科学版), 2018, 43(3): 1-6. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2018.03.001 [14] DIBENEDETTO E. Hölder Continuity of Solutions of Degenerate Parabolic Equations[M]//Universitext. New York: Springer, 1993: 41-76. [15] KOMBE I. Nonlinear Degenerate Parabolic Equations for Baouendi-Grushin Operators[J]. Mathematische Nachrichten, 2006, 279(7): 756-773. doi: 10.1002/mana.200310391 [16] HUANG X T, MA F Y, WANG L H. Lq Regularity for P-Laplace Type Baouendi-Grushin Equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 113: 137-146. [17] TRI N M. Critical Sobolev Exponent for Degenerate Elliptic Operators[J]. Acta Mathematica Vietnamica, 1998, 23(1): 83-94. [18] SOGGE C D. Hangzhou Lectures on Eigenfunctions of the Laplacian[M]. Princeton: Princeton University Press, 2014. [19] CAFFARELLI L, CABRÉ X. Fully Nonlinear Elliptic Equations[M]. Providence: American Mathematical Society, 1995. [20] BYUN S S, WANG L H. Elliptic Equations with BMO Coefficients in Reifenberg Domains[J]. Communications on Pure and Applied Mathematics, 2004, 57(10): 1283-1310. doi: 10.1002/cpa.20037 [21] BYUN S S, WANG L H, ZHOU S L. Nonlinear Elliptic Equations with BMO Coefficients in Reifenberg Domains[J]. Journal of Functional Analysis, 2007, 250(1): 167-196. doi: 10.1016/j.jfa.2007.04.021 [22] 陈亚浙. 二阶抛物型偏微分方程[M]. 北京: 北京大学出版社, 2003.
计量
- 文章访问数: 624
- HTML全文浏览数: 624
- PDF下载数: 73
- 施引文献: 0