李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4): 437-442. doi: 10.3321/j.issn:0459-1879.2003.04.008
|
李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716-722. doi: 10.3321/j.issn:0459-1879.2003.06.009
|
李杰, 陈建兵. 随机动力系统中的广义密度演化方程[J]. 自然科学进展, 2006, 16(6): 712-719. doi: 10.3321/j.issn:1002-008X.2006.06.011
|
CHEN J B, LI J. A Note on the Principle of Preservation of Probability and Probability Density Evolution Equation[J]. Probabilistic Engineering Mechanics, 2009, 24(1): 51-59. doi: 10.1016/j.probengmech.2008.01.004
|
LI J, CHEN J B. Probability Density Evolution Method for Dynamic Response Analysis of Structures with Uncertain Parameters[J]. Computational Mechanics, 2004, 34(5): 400-409. doi: 10.1007/s00466-004-0583-8
|
LI J, CHEN J B, FAN W L. The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability[J]. Structural Safety, 2007, 29(2): 112-131. doi: 10.1016/j.strusafe.2006.03.002
|
CHEN J B, LI J. The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures with Uncertain Parameters[J]. Structural Safety, 2007, 29(2): 77-93. doi: 10.1016/j.strusafe.2006.02.002
|
LI J, PENG Y B, CHEN J B. A Physical Approach to Structural Stochastic Optimal Controls[J]. Probabilistic Engineering Mechanics, 2010, 25(1): 127-141. doi: 10.1016/j.probengmech.2009.08.006
|
陈建兵, 李杰. 随机结构静力反应概率密度演化方程的差分方法[J]. 力学季刊, 2004, 25(1): 21-28. doi: 10.3969/j.issn.0254-0053.2004.01.004
|
LI J, CHEN J B. The Number Theoretical Method in Response Analysis of Nonlinear Stochastic Structures[J]. Computational Mechanics, 2007, 39(6): 693-708. doi: 10.1007/s00466-006-0054-9
|
刘东亮, 徐浩军, 蔡军, 等. 基于Monte Carlo仿真的小概率事件评估算法稳定性研究[J]. 数学的实践与认识, 2012, 42(10): 68-73. doi: 10.3969/j.issn.1000-0984.2012.10.011
|
胡川川. 地震作用下铁道车辆桥上脱轨概率研究[D]. 成都: 西南交通大学, 2019.
|
赵留园, 黄雨. 地震作用下边坡随机动力分析方法的若干进展[J]. 工程地质学报, 2020, 28(3): 584-596.
|
徐善华, 聂彪, 张海江. 基于概率密度演化理论的锈蚀钢梁时变可靠度分析[J]. 湖南大学学报(自然科学版), 2020, 47(7): 75-83.
|
LI J, CHEN J B. The Principle of Preservation of Probability and the Generalized Density Evolution Equation[J]. Structural Safety, 2008, 30(1): 65-77. doi: 10.1016/j.strusafe.2006.08.001
|
蒋仲铭, 李杰. 三类随机系统广义概率密度演化方程的解析解[J]. 力学学报, 2016, 48(2): 413-421.
|
李杰, 陈建兵. 概率密度演化理论的若干研究进展[J]. 应用数学和力学, 2017, 38(1): 2, 32-43.
|
HAMILTON W R. On a General Method in Dynamics; By which the Study of the Motions of all Free Systems of Attracting or Repelling Points is Reduced to the Search and Differentiation of one Central Relation, or Characteristic Function[J]. Philosophical Transactions of the Royal Society of London, 1834, 124: 247-308. doi: 10.1098/rstl.1834.0017
|
FARLOWS J, BECKERS F. Partial Differential Equations for Scientists and Engineers[J]. American Journal of Physics, 1985, 53(7): 702.
|
ESTRADA R, KANWALR P. An Analysis for the Delta Function with Support on the Light Cone[J]. Journal of Physics A: Mathematical and General, 1988, 21(12): 2667-2675. doi: 10.1088/0305-4470/21/12/011
|
徐玲玲, 赵永芳, 井孝功. 狄拉克δ函数[J]. 大学物理, 2010, 29(8): 16-17, 38. doi: 10.3969/j.issn.1000-0712.2010.08.003
|
李书波, 张渡淮. Heaviside函数的非标准分析表示[J]. 哈尔滨科学技术大学学报, 1987(2): 119-121.
|
SIMHAMED Y, YKHLEF F, IRATNI A. A Novel Frequency Tracker for Sinusoidal Signal Based on State Dependent Riccati Equation Filter[J]. Measurement, 2021, 183: 109845. doi: 10.1016/j.measurement.2021.109845
|
ARIARATNAMS T, LOHN K. Optimal Control of Linear Stochastic Systems[J]. International Journal of Control, 1967, 6(1): 51-64. doi: 10.1080/00207176708921789
|
卢琳璋. 两类代数黎卡提方程数值解法的研究进展[J]. 厦门大学学报(自然科学版), 2001, 40(2): 182-186. doi: 10.3321/j.issn:0438-0479.2001.02.004
|
CONTI R. Control and the van Der Pol Equation[M]//Lecture Notes in Mathematics. Berlin: Springer, 1979.
|
KROGDAHLW S. Numerical Solutions of the van Der Pol Equation[J]. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 1960, 11(1): 59-63. doi: 10.1007/BF01591803
|
SAMUELSONP A. Generalized Predator-Prey Oscillations in Ecological and Economic Equilibrium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(5): 980-983. doi: 10.1073/pnas.68.5.980
|
CHAI M, BA L. Application of EEG Signal Recognition Method Based on Duffing Equation in Psychological Stress Analysis[J]. Advances in Mathematical Physics, 2021, 2021: 1-10.
|
陈彬. 单连杆柔性机械臂系统动力学和振动控制研究[D]. 北京: 北京理工大学, 2018.
|
张刚, 曹莉, 贺利芳, 等. 指数型随机共振微弱振动信号检测方法[J]. 振动与冲击, 2019, 38(9): 53-61.
|
TOMAS J. Ultrasubharmonic Resonance in a Duffing System[J]. International Journal of Non-Linear Mechanics, 1971, 6(5): 625-631.
|
XU W, HE Q, FANG T, et al. Stochastic Bifurcation in Duffing System Subject to Harmonic Excitation and in Presence of Random Noise[J]. International Journal of Non-linear Mechanics, 2004, 39(9): 1473-1479.
|
WANG M, SU F. Numerical Research on Stochastic Duffing System[J]. Procedia Engineering, 2012, 29: 1979-1983.
|