-
开放科学(资源服务)标志码(OSID):
-
由于在工程实践中随机性广泛地存在于材料特性、外部荷载和边界条件等因素中,因此随机动力系统分析作为现代力学研究的重要分支,一直以来是人们研究的热点. 文献[1]从概率守恒的基本原理出发,发展了概率密度演化分析理论,建立了广义概率密度演化方程(GDEE),为复杂非线性随机动力系统的分析提供了一条可行的途径[2-4]. 已有的工作证明:这一新的分析理论在线性与非线性系统的随机动力反应分析[5]、结构动力可靠度计算[6-7]、结构随机最优控制等[8]方面均可获得高效、准确的分析结果.
广义概率密度演化方程作为一类偏微分方程,近年来众多学者发展了一系列解析和半解析的求解方法[9-10]对其进行求解. 本文从随机动力系统的相空间出发,提出了一种可用于精确、高效求解非线性系统的GDEE求解方法——相空间重构法(PSRM). 本文利用该方法,得到了若干典型非线性振子的概率密度解,并将其与Monte Carlo模拟方法[11]、有限差分法[9]等数值求解方法进行了比较,验证了该方法的准确性、有效性和便捷性.
Phase Space Reconstruction Method for Generalized Density Probability Evolution Equation
-
摘要: 提出了一种新的相空间重构法(PSRM)用于求解强非线性系统的广义概率密度演化方程,并对若干典型的强非线性随机系统进行了研究,包括SDOF振子、Riccati振子、Van der pol振子和Duffing振子. 所得结果验证了PSRM在求解广义密度演化方程(GDEE)时的高效性与精确性.
-
关键词:
- 广义概率密度演化方程 /
- 相空间 /
- 结构可靠度 /
- 非线性
Abstract: In recent years, the generalized probability density evolution equation (GDEE) derived based on the principle of probability conservation provided a new way for the analysis and control of stochastic dynamic systems because its dimension is independent of the degree of freedom of the system. In the past few years, a series of numerical methods such as finite difference method and meshless method have been developed to solve the generalized probability density evolution equation. In this paper, a new phase space reconstruction method (PSRM) is proposed to solve the generalized probability density evolution equation of strongly nonlinear systems. Some typical strongly nonlinear stochastic systems were studied, including SDOF oscillator, Riccati oscillator, Van der pol oscillator and Duffing oscillator. The results verify the efficiency and accuracy of PSRM in solving the generalized probability density evolution equation (GDEE). -
表 1 SDOF振子在4种方法中不同阈值下的失效概率
阈值 失效概率/% 104次Mento Carlo PSRM PDEM 200次Mento Carlo 0.085 18.51 18.78 29.04 20.41 0.09 15.02 14.02 27.74 14.93 0.095 10.57 9.17 24.42 10.45 相对误差 7.12 90.86 29.20 表 2 Riccati方程在4种方法中不同阈值下的失效概率
阈值 失效概率/% 104次Mento Carlo PSRM PDEM 200次Mento Carlo 0.935 0.80 0.71 3.24 1.00 0.945 0.67 0.56 3.29 1.00 0.955 0.53 0.41 3.25 1.00 相对误差 16.98 402.68 53.45 表 3 Van der pol振子在4种方法中不同阈值下的失效概率
阈值 失效概率/% 104次Mento Carlo PSRM PDEM 200次Mento Carlo 1.80 9.50 10.16 6.06 8.92 1.85 7.46 7.62 4.22 7.92 1.90 5.40 4.77 2.25 6.25 相对误差 6.92 45.98 9.39 表 4 Duffing方程在4种方法中不同阈值下的失效概率
阈值 失效概率/% 105次Mento Carlo PSRM PDEM 600次Mento Carlo 2.45 1.02 0.95 0.86 1.16 2.60 0.90 0.89 0.68 0.83 2.75 0.75 0.61 0.58 0.83 相对误差 9.28 20.68 10.90 -
[1] 李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4): 437-442. doi: 10.3321/j.issn:0459-1879.2003.04.008 [2] 李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716-722. doi: 10.3321/j.issn:0459-1879.2003.06.009 [3] 李杰, 陈建兵. 随机动力系统中的广义密度演化方程[J]. 自然科学进展, 2006, 16(6): 712-719. doi: 10.3321/j.issn:1002-008X.2006.06.011 [4] CHEN J B, LI J. A Note on the Principle of Preservation of Probability and Probability Density Evolution Equation[J]. Probabilistic Engineering Mechanics, 2009, 24(1): 51-59. doi: 10.1016/j.probengmech.2008.01.004 [5] LI J, CHEN J B. Probability Density Evolution Method for Dynamic Response Analysis of Structures with Uncertain Parameters[J]. Computational Mechanics, 2004, 34(5): 400-409. doi: 10.1007/s00466-004-0583-8 [6] LI J, CHEN J B, FAN W L. The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability[J]. Structural Safety, 2007, 29(2): 112-131. doi: 10.1016/j.strusafe.2006.03.002 [7] CHEN J B, LI J. The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures with Uncertain Parameters[J]. Structural Safety, 2007, 29(2): 77-93. doi: 10.1016/j.strusafe.2006.02.002 [8] LI J, PENG Y B, CHEN J B. A Physical Approach to Structural Stochastic Optimal Controls[J]. Probabilistic Engineering Mechanics, 2010, 25(1): 127-141. doi: 10.1016/j.probengmech.2009.08.006 [9] 陈建兵, 李杰. 随机结构静力反应概率密度演化方程的差分方法[J]. 力学季刊, 2004, 25(1): 21-28. doi: 10.3969/j.issn.0254-0053.2004.01.004 [10] LI J, CHEN J B. The Number Theoretical Method in Response Analysis of Nonlinear Stochastic Structures[J]. Computational Mechanics, 2007, 39(6): 693-708. doi: 10.1007/s00466-006-0054-9 [11] 刘东亮, 徐浩军, 蔡军, 等. 基于Monte Carlo仿真的小概率事件评估算法稳定性研究[J]. 数学的实践与认识, 2012, 42(10): 68-73. doi: 10.3969/j.issn.1000-0984.2012.10.011 [12] 胡川川. 地震作用下铁道车辆桥上脱轨概率研究[D]. 成都: 西南交通大学, 2019. [13] 赵留园, 黄雨. 地震作用下边坡随机动力分析方法的若干进展[J]. 工程地质学报, 2020, 28(3): 584-596. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003016.htm [14] 徐善华, 聂彪, 张海江. 基于概率密度演化理论的锈蚀钢梁时变可靠度分析[J]. 湖南大学学报(自然科学版), 2020, 47(7): 75-83. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202007009.htm [15] LI J, CHEN J B. The Principle of Preservation of Probability and the Generalized Density Evolution Equation[J]. Structural Safety, 2008, 30(1): 65-77. doi: 10.1016/j.strusafe.2006.08.001 [16] 蒋仲铭, 李杰. 三类随机系统广义概率密度演化方程的解析解[J]. 力学学报, 2016, 48(2): 413-421. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201602018.htm [17] 李杰, 陈建兵. 概率密度演化理论的若干研究进展[J]. 应用数学和力学, 2017, 38(1): 2, 32-43. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201701003.htm [18] HAMILTON W R. On a General Method in Dynamics; By which the Study of the Motions of all Free Systems of Attracting or Repelling Points is Reduced to the Search and Differentiation of one Central Relation, or Characteristic Function[J]. Philosophical Transactions of the Royal Society of London, 1834, 124: 247-308. doi: 10.1098/rstl.1834.0017 [19] FARLOWS J, BECKERS F. Partial Differential Equations for Scientists and Engineers[J]. American Journal of Physics, 1985, 53(7): 702. [20] ESTRADA R, KANWALR P. An Analysis for the Delta Function with Support on the Light Cone[J]. Journal of Physics A: Mathematical and General, 1988, 21(12): 2667-2675. doi: 10.1088/0305-4470/21/12/011 [21] 徐玲玲, 赵永芳, 井孝功. 狄拉克δ函数[J]. 大学物理, 2010, 29(8): 16-17, 38. doi: 10.3969/j.issn.1000-0712.2010.08.003 [22] 李书波, 张渡淮. Heaviside函数的非标准分析表示[J]. 哈尔滨科学技术大学学报, 1987(2): 119-121. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX198702019.htm [23] SIMHAMED Y, YKHLEF F, IRATNI A. A Novel Frequency Tracker for Sinusoidal Signal Based on State Dependent Riccati Equation Filter[J]. Measurement, 2021, 183: 109845. doi: 10.1016/j.measurement.2021.109845 [24] ARIARATNAMS T, LOHN K. Optimal Control of Linear Stochastic Systems[J]. International Journal of Control, 1967, 6(1): 51-64. doi: 10.1080/00207176708921789 [25] 卢琳璋. 两类代数黎卡提方程数值解法的研究进展[J]. 厦门大学学报(自然科学版), 2001, 40(2): 182-186. doi: 10.3321/j.issn:0438-0479.2001.02.004 [26] CONTI R. Control and the van Der Pol Equation[M]//Lecture Notes in Mathematics. Berlin: Springer, 1979. [27] KROGDAHLW S. Numerical Solutions of the van Der Pol Equation[J]. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 1960, 11(1): 59-63. doi: 10.1007/BF01591803 [28] SAMUELSONP A. Generalized Predator-Prey Oscillations in Ecological and Economic Equilibrium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(5): 980-983. doi: 10.1073/pnas.68.5.980 [29] doi: https://www.hindawi.com/journals/amp/2021/1454547/ CHAI M, BA L. Application of EEG Signal Recognition Method Based on Duffing Equation in Psychological Stress Analysis[J]. Advances in Mathematical Physics, 2021, 2021: 1-10. [30] 陈彬. 单连杆柔性机械臂系统动力学和振动控制研究[D]. 北京: 北京理工大学, 2018. [31] 张刚, 曹莉, 贺利芳, 等. 指数型随机共振微弱振动信号检测方法[J]. 振动与冲击, 2019, 38(9): 53-61. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201909009.htm [32] TOMAS J. Ultrasubharmonic Resonance in a Duffing System[J]. International Journal of Non-Linear Mechanics, 1971, 6(5): 625-631. [33] XU W, HE Q, FANG T, et al. Stochastic Bifurcation in Duffing System Subject to Harmonic Excitation and in Presence of Random Noise[J]. International Journal of Non-linear Mechanics, 2004, 39(9): 1473-1479. [34] WANG M, SU F. Numerical Research on Stochastic Duffing System[J]. Procedia Engineering, 2012, 29: 1979-1983.