ANH C T, TRANG P T. On the 3D Kelvin-Voigt-Brinkman-Forchheimer Equations in some Unbounded Domains[J]. Nonlinear Analysis: Theory, Methods & Applications, 2013, 89: 36-54.
|
SUK Q, QINY M. The Pullback-Attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer System with Delay[J]. Mathematical Methods in the Applied Sciences, 2018, 41(16): 6122-6129. doi: 10.1002/mma.5123
|
MOHAN M T. Global and Exponential Attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer Equations[J]. Discrete & Continuous Dynamical Systems-B, 2020, 25(9): 3393-3436.
|
ANH C T, THANHNV. Asymptotic Behavior of the Stochastic Kelvin-Voigt-Brinkman-Forchheimer Equations[J]. Stochastic Analysis and Applications, 2016, 34(3): 441-455. doi: 10.1080/07362994.2016.1149775
|
QIN Y M, YANG X G, LIU X. Pullback Attractors for a 3D Non-Autonomous Navier-Stokes-Voight Equations[J]. Acta Mathematicae Applicatae Sinica English Series, 2019, 35(4): 737-752. doi: 10.1007/s10255-019-0848-0
|
KALANTAROV V K, TITI E S. Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations[J]. Chinese Annals of Mathematics, Series B, 2009, 30(6): 697-714. doi: 10.1007/s11401-009-0205-3
|
QIN Y M, YANG X G, LIUX. Averaging of a 3D Navier-Stokes-Voight Equation with Singularly Oscillating Forces[J]. Nonlinear Analysis: Real World Applications, 2012, 13(2): 893-904. doi: 10.1016/j.nonrwa.2011.08.025
|
李戈萍, 朱朝生. 带非线性阻尼项的Navier-Stokes方程的时间解析性[J]. 西南师范大学学报(自然科学版), 2021, 46(3): 126-131.
|
LI H Y, QINY M. Pullback Attractors for Three-Dimensional Navier-Stokes-Voigt Equations with Delays[J]. Boundary Value Problems, 2013, 2013(1): 1-17. doi: 10.1186/1687-2770-2013-1
|
NICHE C J. Decay Characterization of Solutions to Navier-Stokes-Voigt Equations in Terms of the Initial Datum[J]. Journal of Differential Equations, 2016, 260(5): 4440-4453. doi: 10.1016/j.jde.2015.11.014
|
KALANTAROVV, ZELIKS. Smooth Attractors for the Brinkman-Forchheimer Equations with Fast Growing Nonlinearities[J]. Communications on Pure and Applied Analysis, 2012, 11(5): 2037-2054. doi: 10.3934/cpaa.2012.11.2037
|
SONG X L, WU J H. Non-Autonomous 3D Brinkman-Forchheimer Equation with Singularly Oscillating External Force and Its Uniform Attractor[J]. AIMS Mathematics, 2020, 5(2): 1484-1504. doi: 10.3934/math.2020102
|
LOUAKED M, SELOULA N, TRABELSI S. Approximation of the Unsteady Brinkman-Forchheimer Equations by the Pressure Stabilization Method[J]. Numerical Methods for Partial Differential Equations, 2017, 33(6): 1949-1965. doi: 10.1002/num.22173
|
YANG X G, LI L, YAN X. The Structure and Stability of Pullback Attractors for 3D Brinkman-Forchheimer Equation with Delay[J]. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074
|
HAJDUKKW, ROBINSONJC. Energy Equality for the 3D Critical Convective Brinkman-Forchheimer Equations[J]. Journal of Differential Equations, 2017, 263(11): 7141-7161. doi: 10.1016/j.jde.2017.08.001
|
刘青, 尚月强. 非定常Navier-Stokes方程有限元算子分裂算法[J]. 西南大学学报(自然科学版), 2019, 41(3): 75-83.
|
王炷霖, 敬璐如, 冯民富. 定常Navier-Stokes方程的三个梯度-散度稳定化Taylor-Hood有限元[J]. 四川大学学报(自然科学版), 2021, 58(4): 21-26.
|